PicoScope® 4000A Series

High-resolution deep-memory oscilloscopes

PicoScope 4000A Series specifications

Model PicoScope 4224A PicoScope 4424A PicoScope 4824A
Oscilloscope – vertical
Input channels 2 4 8
Bandwidth (−3 dB) 20 MHz (50 mV to 50 V ranges)
10 MHz (10 mV and 20 mV ranges)
Rise time (calculated) 17.5 ns (50 mV to 50 V ranges)
35.0 ns (10 mV and 20 mV ranges)
Input type BNC, at least 20 mm spacing
Vertical resolution 12 bits
Software-enhanced vertical resolution Up to 16 bits
Input sensitivity 2 mV/div to 10 V/div (10 vertical divisions)
Input ranges ±10 mV to ±50 V full scale, in 12 ranges
Input coupling Software-selectable AC / DC
Input characteristics 1 MΩ ∥ 19 pF
DC accuracy ±1% of full scale ±300 μV
Analog offset range (vertical position adjustment) ±250 mV (10 mV to 500 mV ranges)
±2.5 V (1 V to 5 V ranges)
±25 V (10 V to 50 V ranges)
Analog offset accuracy ±1% of offset setting additional to basic DC accuracy
Maximum input voltage ±50 V DC, 42.4 V peak AC
Overvoltage protection ±100 V (DC + AC peak)
Oscilloscope – horizontal
Maximum sampling rate (real-time) 80 MS/s (up to four channels in use)
40 MS/s (five or more channels in use)
Maximum sampling rate (USB 3.0, continuous streaming mode) 20 MS/s using PicoScope 6 software, shared between channels
80 MS/s max. for a single channel using PicoSDK. 160 MS/s total across all channels. (PC-dependent)
Timebase ranges 20 ns/div to 5000 s/div
Buffer memory 256 MS shared between active channels
Streaming buffer memory (PicoScope) 100 MS
Streaming buffer memory (SDK) Up to available PC memory
Maximum buffer segments 10,000 
Maximum waveforms per second 100,000 (PC-dependent)
Timebase accuracy ±20 ppm (+5 ppm/year)
Sample jitter 25 ps RMS typical
Dynamic performance (typical)
Crosstalk −76 dB, DC to 20 MHz
Harmonic distortion < −60 dB, 10 mV range
< −70 dB, 20 mV and higher ranges
SFDR > 60 dB, 20 mV and 10 mV ranges
> 70 dB, 50 mV and higher ranges
Noise 45 μV RMS on 10 mV range
Bandwidth flatness DC to full bandwidth (+0.2 dB, −3 dB)
Pulse response < 1% overshoot
Source Channels A to B Channels A to D Channels A to H
Trigger modes Free run, auto, repeat, single, rapid (segmented memory)
Trigger types Edge with adjustable hysteresis, pulse width, window, window pulse width, dropout, window dropout, interval, logic level, runt pulse
Trigger sensitivity Digital triggering provides 1 LSB accuracy up to full bandwidth
Maximum pre-trigger capture 100% of capture size
Maximum post-trigger delay Zero to 4 billion samples (settable in 1 sample steps)
Trigger rearm time < 3 μs on fastest timebase
Maximum trigger rate Up to 10 000 waveforms in a 30 ms burst
Advanced digital trigger levels All trigger levels, window levels and hysteresis values settable with 1 LSB resolution across input range
Advanced digital time intervals Settable with 1 sample resolution from 1 sample (minimum 12.5 ns) up to 4 billion sample intervals
Function generator
Standard output signals Sine, square, triangle, DC voltage, ramp, sinc, Gaussian, half-sine, white noise, PRBS
Standard signal frequency 0.03 Hz to 1 MHz
Sweep modes Up, down, dual
Triggering Can trigger a counted number of waveform cycles or sweeps (up to 1 billion)
from the scope trigger or manually from software.
Frequency accuracy ±20 ppm
Frequency resolution < 0.02 Hz
Voltage range ±2 V
Amplitude and offset adjustment Signal amplitude and offset within ± 2V range. Adjustable in approx 300 μV steps.
Amplitude flatness < 0.5 dB to 1 MHz typical
DC accuracy ±1% of full scale
SFDR 87 dB typical
Output characteristics Rear-panel BNC, 600 Ω output impedance
Overvoltage protection ±10 V
Arbitrary waveform generator
Update rate 80 MS/s
Buffer size 16 kS
Resolution 14 bits (output step size approximately 300 μV)
Bandwidth 1 MHz
Rise time (10% to 90%) 150 ns
Sweep modes, triggering, frequency accuracy and resolution, voltage range and accuracy and output characteristics as for function generator.
Spectrum analyzer
Frequency range DC to 20 MHz
Display modes Magnitude, average, peak hold
Windowing functions Rectangular, Gaussian, triangular, Blackman, Blackman-Harris, Hamming, Hann, flat-top
Number of FFT points Selectable from 128 up to 1 million in powers of 2
Scale / units X axis : linear or log 10
Y axis : logarithmic (dbV, dBu, dBm, arbitrary) or linear (volts)
Math channels
General functions −x, x+y, x−y, x*y, x/y, x^y, sqrt, exp, ln, log, abs, norm, sign, sin, cos, tan, arcsin, arccos, arctan, sinh, cosh, tanh, derivative, integral, delay
Filter functions Lowpass, highpass, bandstop, bandpass
Graphing functions Frequency, duty cycle
Multi-waveform functions Min, max, average, peak
Operands Input channels, reference waveforms, time, constants, pi
Automatic measurements
Scope mode AC RMS, true RMS, cycle time, DC average, duty cycle, falling rate, fall time, frequency, high pulse width, low pulse width, maximum, minimum, peak to peak, rise time, rising rate.
Spectrum mode Frequency at peak, amplitude at peak, average amplitude at peak, total power, THD %, THD dB, THD+N, SFDR, SINAD, SNR, IMD
Statistics Minimum, maximum, average and standard deviation
Scope mode AC RMS, true RMS, cycle time, DC average, duty cycle, falling rate, fall time, frequency, high pulse width, low pulse width, maximum, minimum, peak to peak, rise time, rising rate.
Spectrum mode Frequency at peak, amplitude at peak, average amplitude at peak, total power, THD %, THD dB, THD+N, SFDR, SINAD, SNR, IMD
Statistics Minimum, maximum, average and standard deviation
Serial decoding
Protocols 1-Wire, ARINC 429, CAN, CAN FD, CAN J1939, DALI, DCC, DMX512, Ethernet (10Base-T), FlexRay, I²C, I²S, LIN, Manchester, MODBUS (ASCII and RTU), PS/2, SENT, SPI, UART/RS-232. Subject to number of channels available.
Inputs All input channels with any mixture of protocols
Mask limit testing
Mask creation User-drawn, table entry, auto-generated from waveform or imported from file
Actions Highlight on screen, select in buffer overview, activate alarm
Statistics Pass/fail, failure count, total count
Initiating events Capture, buffer full, mask fail
Alarm actions Beep, play sound, stop/restart capture, run executable, save current buffer/all buffers, trigger signal generator
Interpolation Linear or sin(x)/x
Persistence modes Digital color, analog intensity, fast, custom
Data export
Output file formats BMP, CSV, GIF, JPG, MATLAB 4, PDF, PNG, PicoScope data, PicoScope settings, TXT
Output functions Copy to clipboard, print
Temperature range (operating) 0 °C to 45 °C
Temperature range (stated accuracy) 20 °C to 30 °C
Temperature range (storage) –20 °C to +60 °C
Humidity range (operating) 5% to 80% RH non-condensing
Humidity range (storage) 5% to 95% RH non-condensing
Altitude Up to 2000 m
Pollution degree EN 61010 pollution degree 2: “only nonconductive pollution occurs except that occasionally a temporary conductivity caused by condensation is expected”
Physical properties
Dimensions 190 x 170 x 40 mm (7.5" x 6.7" x 1.6")
Weight < 0.55 kg (19.4 oz)
Windows software PicoScope 6
PicoLog 6
PicoSDK software development kit
Windows 7, 8 or 10 recommended (read more)
macOS software PicoScope 6 Beta
PicoLog 6
Software development kit (SDK)
OS versions: see release notes
Linux software PicoScope 6 Beta
Software development kit (SDK)
See Linux Software & Drivers for details of supported distributions
Raspberry Pi software PicoLog 6 for Raspberry Pi 3B and 4B (Raspberry Pi OS)
Languages PicoScope 6: English, Chinese (simplified), Chinese (traditional), Czech, Danish, Dutch, Finnish, French, German, Greek, Hungarian, Italian, Japanese, Korean, Norwegian, Polish, Portuguese, Romanian, Russian, Spanish, Swedish, Turkish
PicoLog 6: English (UK), English (US), Simplified Chinese, Dutch, French, German, Italian, Japanese, Korean, Russian, Spanish
What's in the box? PicoScope 4000A Series high-resolution oscilloscope
USB 3.0 cable
USB Oscilloscope Quick Start Guide
10:1/1:1 switched probes (quantity shown below)
Number of probes included 2 4 4
PC connectivity SuperSpeed USB 3.0 (USB 2.0 compatible)
Power requirements Powered from USB
Ground terminal M4 screw on rear panel
Safety compliance Designed to EN 61010-1; LVD compliant
EMC compliance Tested to meet EN61326-1 and FCC Part 15 Subpart B
Environmental compliance RoHS and WEEE
Total satisfaction guarantee In the event that this product does not fully meet your requirements you can return it for an exchange or refund. To claim, the product must be returned in good condition within 14 days.
Warranty 5 years