PicoScope® 2000 Series

Like a benchtop oscilloscope, only smaller and better

USB oscilloscopes & mixed signal oscilloscopes

  • 2 channel, 4 channel and MSO models
  • 6 instruments in one
  • Ultra-compact design
  • Up to 100 MHz bandwidth
  • Up to 128 MS buffer memory
  • Decode over 38 serial protocols as standard
  • USB connected and powered
  • Windows, Linux and Mac software
PicoScope 2000 Series 4-channel oscilloscope

Your complete test & measurement laboratory

You can use your PicoScope 2000 Series as an advanced oscilloscope, spectrum analyzer, function generator, arbitrary waveform generator and protocol decoder out of the box. Mixed signal models also add a 16 channel logic analyzer. A complete electronics lab in one compact, low-cost, USB-powered unit.

The PicoScope 2000A models deliver unbeatable value for money and are ideal for education, hobby and field service use. In the lab the low cost allows one scope per person rather than having to share.

The PicoScope 2000B models have the added benefits of deep memory (up to 128 MS), higher bandwidth (up to 100 MHz) and faster waveform update rates. PicoScope 2000B models give you the performance to carry out advanced analysis of your waveforms. They are ideal for design, debug and serial decoding.

The Configure Your Scope panel on the left gives a quick guide to the models, specifications and prices.

High-end oscilloscope

At the heart of every PicoScope 2000 is an advanced oscilloscope which offers everything you would expect and much more besides:

  • 10,000 waveform circular buffer
  • Up to 80,000 waveforms per second update rate
  • Mask limit testing
  • Advanced math & filtering
  • Measurements with statistics
  • Advanced digital triggering 
  • Resolution enhancement to 12 bits

More details on the above and many other options can be found in the Features tab.

Logic analyzer / mixed signal ability

The PicoScope 2000 Series includes mixed signal models that include 16 digital inputs so that you can view digital and analog signals simultaneously.

The digital inputs can be displayed individually or in named groups with binary, decimal or hexadecimal values shown in a bus-style display. A separate logic threshold from –5 V to +5 V can be defined for each 8-bit input port. The digital trigger can be activated by any bit pattern combined with an optional transition on any input. Advanced logic triggers can be set on either the analog or digital input channels, or both to enable complex mixed-signal triggering.

The digital inputs bring extra power to the serial decoding options.  You can decode serial data on all analog and digital channels simultaneously, giving you up to 18 channels of data.  You can for example decode multiple SPI, I²C, CAN bus, LIN bus and FlexRay signals all at the same time!

App note: Debugging an I²C Bus with a PicoScope Mixed–Signal Oscilloscope

Mixed Signal Oscilloscope / Logic Analyzer (roll over red circles for description)

Mixed Signal Oscilloscope / Logic Analyzer

  1. Channel controls:
    Channel controls are used to manage probe types, assign channel names, set vertical scaling, input coupling, and other signal conditioning parameters before making measurements on the device under test (“DUT”).
  2. Serial decoding:
    PicoScope can decode over 30 protocols, including I2C, SPI, UART/RS-232 and CAN standards for automotive and embedded system applications.
    Decoded packets can be displayed in Graph format showing the decoded data (in hex, binary, decimal, or ASCII) in a data bus timing format, beneath the waveform on a common time axis, with error frames marked in red. These frames can be zoomed in to investigate detailed waveform characteristics. Packets can also be displayed in Table format that shows a list of the decoded frames, including the data and all flags and identifiers.
  3. Trigger types:
    Trigger types include basic edge triggering and a number of advanced trigger types that enable the capture of complex signals. This makes them ideal for troubleshooting circuits with glitches, timing violations, dropouts and other signal integrity issues in analog and digital circuits. Using a Pulse width trigger, for example, it is easy to detect a pulse that is narrower than it should be. The Runt trigger can be used to isolate under / over height pulses that result from setup & hold violations in digital circuit designs.
  4. Time base control:
    Time base control is used to set the timing of an acquisition using the seconds / division control. Sampling controls provide a choice of time base operating modes: Buffer memory priority adjusts sampling rate to maintain a fixed capture memory depth. Sample rate priority adjusts memory depth to maintain a fixed sampling rate.
  5. Digital channel controls:
    Digital channel controls, on MSO models, display a digital signal as either a logic high or logic low, depending on whether the voltage on that channel is above or below a set threshold. The digital channels are displayed individually or can be grouped together in a bus display, all time correlated with the analog channels around the same trigger point. The bus value can be displayed in hex, binary, decimal, or level for DAC testing.
  6. Toolpark:
    Toolpark houses secondary functions such as Measurements, Math channels, Serial decoding, Rulers, Mask testing and Actions etc., are just one touch away and can be favorited to create a custom UI layout that suits user preferences and work patterns.
  7. Math channels:
    PicoScopes offer advanced math functions: multiplication, division and integration as well as basic functions like addition and subtraction. Multiplication can be used to calculate power from V & I waveforms, and energy by integrating the power waveform.
 

Serial bus decoding and protocol analysis

PicoScope includes more serial decoders than any other oscilloscope on the market. All decoders are included as standard* with no optional extras required or licences to be purchased. Our regular free software updates provide new decoders as they are released. To keep up-to-date with our latest software releases and serial decoder offerings, why not sign-up to our monthly newsletter.

*Ensure the bandwidth of your chosen PicoScope device is high enough to capture the signals you wish to decode.

Key Features:

  • Decode and display multiple protocols:  You can decode multiple different protocols at the same (e.g. CAN, LIN and FlexRay).  The only limit is the number of available channels. The high resolution of a PC display is perfect for such complex applications.
  • Data visualization: View decoded data in hex, binary, decimal, or ASCII directly beneath the waveform on a common time axis. Error frames are highlighted in red for quick identification and can be zoomed in for a detailed investigation of noise or signal integrity issues.

  • Graph format shows the decoded data beneath the waveform on a common time axis, with error frames marked in red. These frames can be zoomed to investigate noise or distortion.

  • Detailed table format: See a comprehensive list of decoded frames, including all data, flags, and identifiers. Use filtering to focus on specific frames or search for frames with particular properties. The statistics option gives deeper insight into the physical layer, revealing frame times and voltage levels. Click any frame in the table to zoom into its corresponding waveform.

  • Export and offline analysis: Easily export table view data for offline viewing and analysis, ensuring you can work with your data whenever and wherever you need.

  • Link file feature: Accelerate your analysis by cross-referencing values to human-readable text.
  • Import: PicoScope can a spreadsheet to decode the hexadecimal data into user-defined text strings.

Discover why PicoScope is the preferred choice for professionals demanding precision and efficiency in serial decoding.

PicoScope spectrum measurements

FFT spectrum analyzer

The spectrum view plots amplitude against frequency, revealing details that would otherwise be hidden in an oscilloscope view. It is ideal for finding noise, crosstalk or distortion in signals. The spectrum analyzer in PicoScope is of the Fast Fourier Transform (FFT) type that, unlike a traditional swept spectrum analyzer, can display the spectrum of a single, non-repeating waveform.

With a click of a button, you can display a spectrum plot of the active channels, with a maximum frequency up to the bandwidth of your scope. To focus on a specific frequency range, you can directly set the start and stop values of the analyzer frequency axis. A full range of settings gives you control over the number of spectrum bands (FFT bins), start/stop frequencies, scaling (including log/log) and display modes (instantaneous, average, or peak-hold). A selection of window functions allows you to optimize for selectivity, accuracy or dynamic range.

You can display multiple spectrum views alongside oscilloscope views of the same data. A comprehensive set of automatic frequency-domain measurements can be added to the display, including THD, THD+N, SNR, SINAD and IMD. You can even use the AWG and spectrum mode together to perform swept scalar network analysis.

The spectrum works with the waveform buffer so you can capture and rewind through thousands of spectrum plots or why not use the mask limit tests to scan through them all automatically? Spectrum masks can also work with PicoScope actions so you can leave the spectrum running continuously and choose to save mask fails to disk or even sound an alarm.

More information on Spectrum analyzer >>

PicoScope Arbitary Waveform Generator (AWG) editor

Arbitrary waveform generator (AWG) and function generator

All PicoScope 2000 Series oscilloscopes have a built-in function generator and arbitrary waveform generator (AWG) which output signals on a front panel BNC.

The function generator can produce sine, square, triangle and DC level waveforms, and many more besides, while the AWG allows you to import custom waveforms from data files or create and modify them using the built-in graphical AWG editor.

As well as level, offset and frequency controls, advanced options allow you to sweep over a range of frequencies. Combined with the advanced spectrum mode, with options including peak hold, averaging and linear/log axes, this creates a powerful tool for testing amplifier and filter responses.

PicoScope 2000B models have trigger options that allow one or more cycles of a waveform to be output when various conditions are met, such as the scope triggering or a mask limit test failing.

Frequency response analyzer / Bode plot

Frequency response analyzer / Bode plot

Download new features or write your own

The software development kit (SDK) allows you to write your own software and includes drivers for Microsoft Windows, Apple Mac (OS X) and Linux (including Raspberry Pi and BeagleBone).

Example code shows how to interface to third-party software packages such as Microsoft Excel, National Instruments LabVIEW and MathWorks MATLAB. 

There is also an active community of PicoScope users who share code and applications on the Pico forum and PicoApps section of the picotech.com web site. The Frequency Response Analyzer shown opposite is one of the most popular 3rd party applications.

Features