Creating a Custom Protocol Decoder

Contents
AN LS 1L o= TY=Te I D L=l Yo (=1

XML DASEA DECOTET ...eneiieiiieetee ettt ettt ettt s et e sat e s bt e s sbte e s bt e e sbeeesabeesabeeesabeesabeeeanseesabeeesareesn
Setting up a newly created ProtoCOl DECOUENcivuiiiiiiiiiie et e e s
Details of .Net INterface MeEMDEIS......co.ui it e e st e e s e e
Details of XML SChema @lEmMENTS.cc.eiiiiiiieieeeee ettt

T 0 g Y1 =4 o] o F- PPN RRRNY

.NET DIl based Decoder

Create a .NET DIl using C#{(Recommended) and Visual Studio(Recommended).
DIl should implement the interface ISerialProtocoPlugin or BasePlugin class.
ISerialProtocolPlugin or BasePlugin can be found in Pico.ProtocolPluginBase.dll found in PicoScope installation directory.

There are 2 ways PicoScope recognise the new decoder dll.

o Either place it under PicoScope Installation Directory/Decoders folder

o Or Use “Import” button in SerialDecoding Setup dialog and locate the dll as in Fig 1.

4y PicaScope 6

[Ay des 35w 15 @] =
LB _£om _views Msssorsments _Took tie S— N 1
e 1Al | | P G| 200 wsvam=]| | =1 1] [wooows (1[50t S AR oA
Aq Auto ~1 oc]| By oOff ~] =2
I
"
“q serial Decoding =
Crarnes Protocen. B o) Open - -
” <Hore swincing > - — o E 3
A — I |l « Projects » SerisiDecoding » PicoScope » bin » Debug » Decoders ~T% [h Decoder 5
1 ors PrsmasT =~ 1 ® -
. o0t 07 on
(_impon) = on
B Downiceds % CANLowa 5 124
% Oropbon < mc.an . o
:
sz0mm
4 Libe
oo
o Personal2) =
Fapmore - [[Oecoaer oLt ies -
[open] comca |
8
oo
sony
o ..
© | Tioger None (=] | Messurements (3

Fig 1
The Protocol decoder(dll) should then be available in the Protocol List in Fig 3

Note: Details of .Net Interface members are explained in below sections

XML based Decoder

- Create a xml file based on the XMLSchema SerialProtocolPlugin.xsd.
- SerialProtocolPlugin.xsd can be found in PicoScope Installation Directory/Decoders folder
- There are 2 ways PicoScope recognise the new decoder xml.

o Either place it under PicoScope Installation Directory/Decoders folder
“« ” F—
o Or Use “Import” button in SerialDecoding Setup dialog and locate the xml as in Fig 2.
Ay PicoScope 6 At my desk D223:Ser.] L= =
File Edit Views Measurements Tools Help [—]
(A du | | 2 4] 200 pssaiv] | x1 =] 4908 k5 4l sors @ aaa & pico
Ay |Auto DC By |Off)| n “
v
Sample interval Sons
= e e e s = g A o i e e B A P =P = i P | S ot 20Ms/s
s No. samples 40000
Serial Decoding =
- Cramnel 3
[ox) Open Range somy
. =) @Qv‘ Ji » Computer » Office (C) + Projects » New Decoders Coupling o
Digital Channels
Hep | Organize New folder Doto D7 o
[amport_| % Favorites B . Date modified Type Size D8 to D15 off
200 B Desktop 02/07/201312:05 .. XML Decument 3KE Capture Date 11/07/2013
8 Downloads : 02/07/201312:05.. XML Document 2KB Capture Time 93447 AM
A B | Frame Rate 1430
% Recent Places | = nSegments N
100
Mem Usage 11459M8
Gl Libraries CPU Usage 00%
[Documents
& Music
oo [Pictures
B Videos
/%I Computer
100 &% Office (C)
(s Personall (E)
s Personal2 (F) =
200 File name: + N Decoder XML files (ami)
o1
300
00
005
oo 02 0s os o8 0 12 14 18 1z 20
20
@O Trioger None T T T [Measurements &

Fig 2
- The Protocol decoder(xml) should then be available in the Protocol List in Fig 3

Note: Details of Xml Schema are explained in below sections

Setting up a newly created Protocol Decoder

r -
Serial Decoding S5

None seected
<None selected> -
e
CAN Low
B¢
s
P

R5232/UART
O

Fig 3
Once the Protocol is selected, then a set of controls will be displayed Under “Protocol Settings” as seen in Fig 4.

- These controls will load up with any default settings specified in the Plugin(DIl or xml).

- These settings can be modified and saved.

- Use AutoSetup buttons to let PicoScope detect the settings for you.

- Use Advanced Settings button to customize any additional protocol settings.

- Additional Settings are populated with the settings from the Plugin(DIl or Xml) which are tagged as user settings.
- Under “Display Settings” you can assign a display name and color for the protocol displayed in the PicoScope.

- Click OK and protocol decoder should start displaying packets.

s N
Serial Decading u

RS232/UART

Cancel

Protocol Settings |_Advanced Settings | Z Auta Setup
Baud Rate 57.6 kbaud E@
Thresholds Channel Threshold 1 Threshold 2

Data i)m A 389 mv | 2

Display Settings

Name RS232/UART - A

Show Decoded Data In Graph Hex
In Table Hex

Information: Number of samples is currently set to 49.08 kS which is more -

than required 1.843 kS.

Fig 4

Details of .Net Interface members
Refer to UART.cs(attached sampled) for help with implementation

- Protocol : Gives a name to the protocol which is displayed in the Combo in Fig3

- BaudRate : it protocol has a fixed baud rate return it. Else return “float.NaN” .If a valid value is specified then a Spinner control

will be created with default settings. It can be modified if required.

- BitOrder : Specify whether the First bit sent on the channel is LSB or MSB. In PicoScope packets are always displayed as MSB to
LSB. For example, if MSB is specified then the packet bits will be swapped and displayed. This setting can be made to appear in the
Advanced Settings Dialog. Set a string value to DisplayAsControl and it will displayed with this label and a combo with LSB and MSB
as options

- InvertPacketContent : if set to TRUE, then 0 is converted to 1 and 1 to 0 before displaying. This setting can be made to

appear in the Advanced Settings Dialog. Set a string value to DisplayAsControl and it will displayed with this label and a combo with
TRUE and FALSE as options.

- HasBitStuffing : Specify the number of bits used in BitStuffing. Later in GetPacketFileds() we should also mention the bits

which are involved in BitSutffing.

- ClockChannellndex : Al the multi channel protocol decoding is based on a clock channel which is very important. So, return
the index of the channel in the Plugin which is used as Clock. Later in GetChannelDetails() all the channels are defined. Index
returned here refers to the channel index in GetChannelDetails() list.

- NeedsEdgeVaIidation : This is used to validate the channel(mentioned in the GetChannelDetails()) other than the clock

channel. If set to TRUE, then channel edges which happen very close to Clock channel edges are not considered and ignored. If set to
FALSE, then edges that happen very close to Clock channel edge is considered as valid condition. This mainly affects in detecting the
Packet Start and Bit validations.

For example, in the below condition, CS changes from LOW to HIGH at CLK(Clock) falling edge.

In the Plugin if you have specified a Packet Start condition as CS Rising when CLK Falling.

If NeedsEdgeValidation = TRUE, then this condition is not met because CS Rising happens very close to CLK falling. If set to FALSE,
then it is allowed and so condition is met.

S R IS S B SN R
cs |
PALS

MIOS]

- IsBitValidAtStartCondition : Specifies whether the bit at the Start Condition should be considered as the first data bit. This
depends on the GetBitValidations() and GetPacketStartConditions().
For example : If set to TRUE, then when the Start Condition happens, and if the BitValid condition is met, data will be logged. If set
to FALSE, then then Bit Valid will not be logged and Data bit will be the next bit valid after the Start Condition.

- NumBitsBeforeNextPacketStart - for a protocol the start of packet is defined by number of bits then set this value.

For example, in SPI protocol ChipSelect can go LOW(Green) a long time back before the 1% Clock(Red) Rising Edge. But exactly after
8 bits is the packet start. So if NumBitsBeforeNextPacketStart is set to 8, then after 8 Clock Rising Edges a Packet Start is marked.

LU HIHHHH UL LA

- NumBitsDelayAfterStart : specify delay in number of bits after the start condition when the Packet actually is formed. For
example in 12S protocol, Start condition is Clock(Red) rising and Wordselect(Green) Rising.
But the packet actually starts at the next Rising Clock Edge and hence a delay of 1 bit.
If this control has to be listed in the AdvancedSettings control, then return a string set to DisplayAsControl property and a list of
options set to OptionsList property

AR
SEETAVAWAVAYAN VAR VAN

GetChanneIDetaiIs() : Set the number of channels involved in the Protocol decoding.

For each channel, return a
o DisplayName - name that should be shown in the Serial Decoding Setup dialog in Fig 3
o IsOptional - Option saying whether the channel should be optional in decoding. Doing this will allow you to choose it for
decoding or skip it.
o Thresdholdl and Threshold2 - Lower and Upper thresholds for the channel. When protocol is first selected these values
will be shown. Later, if required an AutoSetup can be done to change the values
GetBitVaIidConditions() : Specify the conditions at which a protocol data bit can be collected. BitValidConditions can use
one or all channels.
For each BitValidCondition, return a
o ConditionType — which is either SerialEdge or SerialSignalLevel
o ConditionValue — which is Rising/Falling/RisingOrFalling if Type set is SerialEdge and High/Low/HighOrLow if Type set is
SerialSignalLevel
o DisplayAsControl — set a string if you want this setting to be displayed in the AdvancedSettings control
GetPacketStartConditions() : specify the conditions at which a protocol packet start is defined. PacketStartConditions can
use one or all channels. For each PacketStartCondition, return a
o ConditionType — which is either SerialEdge or SerialSignalLevel
o ConditionValue — which is Rising/Falling/RisingOrFalling if Type set is SerialEdge and High/Low/HighOrLow if Type set is
SerialSignalLevel
o DisplayAsControl — set a string if you want this setting to be displayed in the AdvancedSettings control
GetPacketTypes() : List all the packet types in the protocol.

GetPacketsFollowingStartCondition() : List all the packet types which are likely to happen soon after the Start
condition is met.
GetPacketFields(packetName) : For a given packet name, return all the packet fields.
For each Field, return a
o Name - Name for the field
o BitCount - Number of bits in the field
o OptionsList - If the number of bits is flexible, then a string se to DisplayAsControl so that it will be displayed in the
Advanced Settings control
IsinvolvedinBitStuffing - Whether the field is involved in BitStuffing
FixedValue — If there are any fixed values to the field to recognise a packet type. For example, in CAN protocol, if Field
IDE = 1, then it is a Data packet type and if it is 0, then it is Remote packet type.
o LenDependsOn — If the bit count depends on another field, return the name of the other field. Later GetPacketLength()
will be called to get the bit count.
o MappedColumn - If the Field name and the Column in which it is displayed in the PicoScope is different. Set the column
name to which the field decoded value should be displayed.
o DisplayAsControl — set a string to be displayed in the AdvancedSettings control with the OptionsList for BitCount

GetTabIeCqumns() : Return all the table columns to be displayed in the PicoScope . Specify the Name of the column and
Data type like Hex, Binary , Decimal or ASCII.

GetPacketLength(fieldname, fieldContent) : if the bitcount of a field depends on the contents of a previous field,
then implement it here.

Intialize() : Do an initialization process in the .Net dll before packets creation start.
Finish() : Do any completion tasks once the decoding is completed.

IsValid(Dictionary<strin,string>) : For every packet formed from the plugin definition above, this call will be sent to the
.NET DIl to check whether the packet is valid or are there any errors in the packet. You can do tasks like CRC checks and other
validations in this call and return appropriate messages to PicoScope to be displayed along with the packet.
You can return,
o Whether the packet is Valid or not.
o Any error type to be displayed in the Error column of PicoScope
o Any Special Packet name to be displayed in the Packet column of PicoScope

Details of XML Schema elements

Refer to UART.xml(attached sampled) for help with implementation

Element ProtocolDetails : contains basic protocol details. Elements are:

Name : Gives a name to the protocol which is displayed in the Combo in Fig3

BaudRate : if protocol has a fixed baud rate return it. Else return “float.NaN” .If a valid value is specified then a Spinner control
will be created with default settings. It can be modified if required.
BitOrder : Specify whether the First bit sent on the channel is LSB or MSB. In PicoScope packets are always displayed as MSB to
LSB. For example, if MSB is specified then the packet bits will be swapped and displayed.

o Value =LSB or MSB

o DisplayAsControl = string text. If you want it to be displayed in AdvancedSettings control
InvertPacketContent : i set to TRUE, then 0 is converted to 1 and 1 to 0 before displaying.

o Value =True or False
o) DisplayAsControl = string text. If you want it to be displayed in AdvancedSettings control

Element ChannelDetails : List of Sources used in Protocol decoding. Elements are

ClockChannellndex : All the multi channel protocol decoding is based on a clock channel which is very important. So, return
the index of the channel in the Plugin which is used as Clock. Later in Sources all the channels are defined. Index returned here
refers to the channel index in Sources list.

NeedsEdgeValidation : Thisis used to validate the channel(mentioned in the Sources) other than the clock channel. If set
to TRUE, then channel edges which happen very close to Clock channel edges are not considered and ignored. If set to FALSE, then
edges that happen very close to Clock channel edge is considered as valid condition. This mainly affects in detecting the Packet Start
and Bit validations.

For example, in the below condition, CS changes from LOW to HIGH at CLK(Clock) falling edge.

In the Plugin if you have specified a Packet Start condition as CS Rising when CLK Falling.

If NeedsEdgeValidation = TRUE, then this condition is not met because CS Rising happens very close to CLK falling. If set to FALSE,
then it is allowed and so condition is met.

cs [
rALS
MO |

Sources : Contains a list of channels used in the protocol decoding. Each Source element has sub elements like
Channelindex : This is important index, which is used later in the Schema to refer channels by index.
DisplayName : name that should be shown in the Serial Decoding Setup dialog in Fig 3
IsOptional : Option saying whether the channel should be optional in decoding. Doing this will allow you to choose it for
decoding or skip it.
o Threshold 1, Threshold 2 : Lower and Upper thresholds for the channel. When protocol is first selected these values will
be shown. Later, if required an AutoSetup can be done to change the values

Element BitVaIidityDetaiIs : Specify the conditions at which a protocol data bit can be collected. BitValidConditions can use one or

all channels. Elements are:

Conditions :
For each Condition has sub elements like
o ChannelindexRef : referring to a channel in Sources
o ConditionType — which is either SerialEdge or SerialSignalLevel
o ConditionValue — which is Rising/Falling/RisingOrFalling if Type set is SerialEdge and High/Low/HighOrLow if Type set is
SerialSignalLevel
o DisplayAsControl — set a string if you want this setting to be displayed in the AdvancedSettings control

Element PacketStartDetails : Specify the conditions at which a protocol packet start is defined. PacketStartConditions can use one

or all channels. Elements are:

PacketsFollowingStartCondition : List all the packet types which are likely to happen soon

after the Start condition is met. If multiple packets are to be listed then separate with a “;”. For example “Data;Address”

- IsBitValidStartCondition: specifies whether the bit at the Start Condition should be considered as the first data bit. This
depends on the BitValiditDetails.Conditions and PacketStartDetails.Conditions.
For example : If set to TRUE, then when the Start Condition happens, and if the BitValid condition is met, data will be logged. If set
to FALSE, then then Bit Valid will not be logged and Data bit will be the next bit valid after the Start Condition.

- NumBitsBeforeNextPacketStart - if for a protocol the start of packet is defined by number of bits then set this value.

For example, in SPI protocol ChipSelect can go LOW(Green) a long time back before the 1% Clock(Red) Rising Edge. But exactly after
8 bits is the packet start. So if NumBitsBeforeNextPacketStart is set to 8, then after 8 Clock Rising Edges a Packet Start is marked.

UL UUOULI JULTUUUL UL

- NumBitsDelayAfterStart : specify delay in number of bits after the start condition when the Packet actually is formed. For
example in 12S protocol, Start condition is Clock(Red) rising and Wordselect(Green) Rising.
But the packet actually starts at the next Rising Clock Edge and hence a delay of 1 bit.
If this control has to be listed in the AdvancedSettings control, then return a string set to DisplayAsControl property and a list of
options set to OptionsList property

AN
ANV TN

- Conditions : specify the conditions at which a protocol data bit can be collected.

PacketStartConditions can use one or all channels.

For each Condition has sub elements like

o ChannelindexRef : referring to a channel in Sources

o ConditionType — which is either SerialEdge or SerialSignalLevel

o ConditionValue — which is Rising/Falling/RisingOrFalling if Type set is SerialEdge and High/Low/HighOrLow if Type set is
SerialSignalLevel

o DisplayAsControl — set a string if you want this setting to be displayed in the AdvancedSettings control

Element PacketDetails : Specifies a list of packets defined in the protocol. Elements are:

- Packet : specifies a packet type. The sub elements are:
Name : name of packet
PossibleNextPacketTypes : defines the possible packet types after this packet type. If multiple packets are to be listed
then separate with a “;”. For example “Data;Address” .
Each Packet contains multiple flelds. Each Field element contains sub elements:

o Name - Name for the field

o BitCount - Number of bits in the field

o OptionslList - If the number of bits is flexible, then a string se to DisplayAsControl so that it will be displayed in the
Advanced Settings control

o PacketRecognisers— If there are any fixed values to the field to recognise a packet type. For example, in CAN protocol, if
Field IDE = 1, then it is a Data packet type and if it is O, then it is Remote packet type.

o LenDependsOn — If the bit count depends on another field, return the name of the other field. Later GetPacketLength()
will be called to get the bit count.

o MappedColumn - If the Field name and the Column in which it is displayed in the PicoScope is different. Set the column
name to which the field decoded value should be displayed.

o DisplayAsControl — set a string to be displayed in the AdvancedSettings control with the OptionsList for BitCount

Element TableColumnDetails : Specifies a list of Columns that will be displayed in the PicoScope. Elements are:

- Column: Specifies a column type. The sub elements are:
o Name —name of the column
o Type - display type of the column which is either Hex, Binary, Decimal or ASCII

Limitations

Clock channel is always required for a multi-channel protocol decoding
- Supports only 1 data channel decoding

Supports only the following line coding : NRZ, Unipolar NRZ, Bipolar NRZ,

