PicoScope 6000E Series

Ultra-deep-memory, high-performance oscilloscopes and MSOs

PicoScope 6000E Series with ultra-deep capture memory

PicoScope 6000E oscilloscope on workbench, with the Pico probe holder used to connect to a device under test (DUT).

With 500 MHz analog bandwidth complemented by a real-time sampling rate of 5 GS/s, the PicoScope 6000E Series scopes can display single-shot pulses with 200 ps time resolution.

The PicoScope 6000E Series gives you the deepest capture memory—up to 4 GS in total—available as standard on any oscilloscope at any price. This ultra-deep memory allows the oscilloscope to capture 200 ms waveforms at its maximum sampling rate of 5 GS/s.

Compact design of the PicoScope 6000E, just 245 x 192 x 62 mm (9.7 x 7.6 x 2.5 inches) means that it fits easily on any workbench, whether in the laboratory or at home.

The PicoScope 6000E Series gives you the waveform memory, resolution and analysis tools that you need to perform stringent testing of today’s high‑performance electronic components and next-generation embedded system designs.

Signal fidelity

Careful front-end design and shielding reduce noise, crosstalk and harmonic distortion. PicoScope 6000E Series oscilloscopes exhibit a dynamic performance of up to 60 dB SFDR.

With PicoScope, when you probe a circuit, you can trust in the waveform you see on the screen.

PicoScope 6000E screenshot with SFDR measurement Photo of PicoScope 6000E circuit board showing screening cans

...

A 200 ms duration waveform zoomed in to show details of a pulse just a few ns wide.

Deep capture memory

With 500 MHz analog bandwidth complemented by a real-time sampling rate of 5 GS/s, the PicoScope 6000E Series scopes can display single-shot pulses with 200 ps time resolution.

The PicoScope 6000E Series gives you the deepest capture memory—up to 4 GS in total—available as standard on any oscilloscope at any price. This ultra-deep memory allows the oscilloscope to capture a 200 ms waveform at its maximum sampling rate of 5 GS/s.

The deep  memory can also be segmented into multiple capture memory buffers—up to 10,000. Successive waveforms are captured into the next buffer with each new trigger event. 

The PicoScope 6000E Series gives you the waveform memory, resolution and analysis tools that you need to perform stringent testing of today’s high‑performance electronic devices and next-generation embedded system designs.

More information on deep-memory oscilloscopes >>

What is FlexRes?

Pico FlexRes flexible-resolution oscilloscopes allow you to reconfigure the scope hardware to optimize either the sampling rate or the resolution.

This means you can reconfigure the hardware to be either a fast (5 GS/s) 8-bit oscilloscope for looking at digital signals, a 10-bit oscilloscope for general-purpose use or a high-resolution 12-bit oscilloscope for audio work and other analog applications.

Whether you’re capturing and decoding fast digital signals or looking for distortion in sensitive analog signals, FlexRes oscilloscopes are the answer.

FlexRes is available on the PicoScope 6824E and 6424E.

Resolution enhancement—a digital signal processing technique built into PicoScope 6— can further increase the effective vertical resolution of the scope to 16 bits.

More information on flexible resolution >>

FlexRes - how we do it

Most digital oscilloscopes gain their high sampling rates by interleaving multiple 8-bit ADCs. This interleaving process introduces errors that always make the dynamic performance worse than that of the individual ADC cores.

The FlexRes architecture employs multiple high-resolution ADCs at the input channels in different time-interleaved and parallel combinations to optimize either the sampling rate to 5 GS/s at 8 bits, the resolution to 12 bits at 1.25 GS/s, or other combinations in between.

The diagram shows one bank of four channels. The PicoScope 6824E has two banks.

Coupled with high signal-to-noise ratio amplifiers and a low-noise system architecture, FlexRes technology can capture and display signals up to 500 MHz with a high sampling rate, or lower-speed signals with 16 times more resolution than typical 8-bit oscilloscopes.

The PicoScope 6 software lets you choose between setting the resolution manually and leaving the scope in auto resolution mode, where the optimal resolution is used for the chosen settings.

PicoScope 6000E MSO display with analog and digital channels.

Mixed-signal options

Most benchtop mixed-signal oscilloscopes give you a maximum of four analog channels and 16 digital inputs. When fitted with the optional 8-channel TA369 MSO pods, the PicoScope 6000E Series adds up to 16 high-performance digital channels to its four or eight analog channels, enabling you to accurately time-correlate analog and digital channels. Digital channel bandwidth is 500 MHz, equivalent to 1 Gb/s, and the input capacitance of only 3.5 pF minimizes loading on the device under test.

Digital channels, captured from either parallel or multiple serial buses, may be grouped and displayed as a bus, with each bus value displayed in hex, binary or decimal, or as a level (for DAC testing). You can set advanced triggers across the analog and digital channels.

The digital inputs also bring extra power to the serial decoding feature. You can decode serial data on all analog and digital channels simultaneously, giving you up to 24 channels of data – for example, decoding multiple SPI, I²C, CAN bus, LIN bus and FlexRay signals all at the same time!

More information on mixed-signal oscilloscopes >>

High resolution for low-level signals

With 12-bit resolution, the PicoScope 6424E and 6824E can display low-level signals at high zoom factors. This allows you to view and measure features such as noise and ripple superimposed on larger DC or low-frequency voltages.

Additionally, you can use the lowpass filtering controls on each channel independently, to hide noise and reveal the underlying signal.

PicoScope 6000E Arbitrary Waveform Generator (AWG) settings screen

Arbitrary waveform and function generator

The PicoScope 6000E scopes have a built-in 50 MHz function (sine and square wave) generator, with triangle, DC level, white noise, PRBS and other waveforms possible at lower frequencies. As well as basic controls to set level, offset and frequency, more advanced controls allow you to sweep over a range of frequencies. Combined with the spectrum peak hold option, this makes a powerful tool for testing amplifier and filter responses.

Trigger tools allow one or more cycles of a waveform to be output when various conditions are met, such as the scope triggering or a mask limit test failing.

All models include a 14-bit 200 MS/s arbitrary waveform generator (AWG). This has a variable sample clock, which avoids jitter on waveform edges seen with fixed-clock generators and allows generation of accurate frequencies down to 100 µHz. AWG waveforms can be created or edited using the built-in editor, imported from oscilloscope traces, loaded from a spreadsheet or exported to a .csv file.

More information on the arbitrary waveform and function generator >>

Digital triggering architecture

Many digital oscilloscopes still use an analog trigger architecture based on comparators. This causes time and amplitude errors that cannot always be calibrated out and often limits the trigger sensitivity at high bandwidths.

In 1991 Pico pioneered the use of fully digital triggering using the actual digitized data. This technique reduces trigger errors and allows the oscilloscopes to trigger on the smallest signals, even at the full bandwidth. Trigger levels and hysteresis can be set with high precision and resolution.

Logic triggering settings panel on a PicoScope 6000E mixed signal oscilloscope.

Advanced triggers

The PicoScope 6000E Series offers an industry-leading set of advanced trigger types including pulse width, runt pulse, windowed, logic and dropout.

The digital trigger available during MSO operation allows you to trigger the scope when any or all of the 16 digital inputs match a user-defined pattern. You can specify a condition for each channel individually, or set up a pattern for all channels at once using a hexadecimal or binary value.

You can also use the logic trigger to combine the digital trigger with an edge or window trigger on any of the analog inputs, for example to trigger on data values in a clocked parallel bus.

More information on advanced digital triggers >>

Eye diagram displayed on a PicoScope 6000E oscilloscope in Persistence Mode.

Hardware acceleration engine HAL4

Some oscilloscopes struggle when you enable deep memory; the screen update rate slows and the controls become unresponsive. The PicoScope 6000E Series avoids this limitation with the use of a dedicated fourth-generation hardware acceleration (HAL4) engine inside the oscilloscope.

Its massively parallel design effectively creates the waveform image to be displayed on the PC screen and allows the continuous capture and display to the screen of 2.5 billion samples every second.

The hardware acceleration engine eliminates any concerns about the USB connection or PC processor performance being a bottleneck.

Timestamping

The PicoScope 6000E Series features hardware-based trigger timestamping with single-sample-period resolution. With the number of segmented memory buffers set from 2 to 10 000, each waveform buffer is stamped with the time since the first and the previous trigger events.

In Rapid trigger mode fast trigger rearm times are possible down to 300 ns (typical).

In all trigger modes there is also a timestamp giving date and time to one-second resolution.

...

Intelligent probe interface (probes coming soon!)

With an intelligent probe interface on four channels, the PicoScope 6000E Series will support innovative active probes with a low-profile mechanical design for ease of connectivity and low loading of the device under test.

Pico Planet logo - title of the environmental awareness and action program running at Pico Technology Ltd.

Cost of ownership

Total cost of ownership (TCO) of a PicoScope 6000E is lower than traditional benchtop instruments for several reasons:

1. Low power consumption - just 60W - saves hundreds of dollars throughout the lifetime of the product compared to benchtop instruments. It's kinder to the environment too, with lower CO2 emissions. 

2. Everything's included in the purchase price: serial protocol decoders / math channels/mask limit testing for example. No expensive optional upgrades or annual license fees.

3. Free updates. New features and capabilities are provided throughout the lifetime of the product as we develop and release them.

Overview Software