PicoScope 7 Software
Available on Windows, Mac and Linux
PicoScope® 5000 Series
FlexRes® Oscilloscopes
High speed and high resolution. Breakthrough ADC technology switches from 8 to 16 bits in the same oscilloscope.
Despite the compact size and low cost, there is no compromise on performance, with bandwidths up to 200 MHz. This bandwidth is matched by a real-time sampling rate of 1 GS/s, allowing detailed display of high frequencies. With a real-time sampling rate of five times the input bandwidth, PicoScope 5000 Series oscilloscopes are well equipped to capture high-frequency signal detail. For repetitive signals, the maximum effective sampling rate can be boosted to 10 GS/s by using Equivalent Time Sampling (ETS) mode.
PicoScope includes more serial decoders than any other oscilloscope on the market (40 and counting). All decoders are included as standard* with no optional extras required or licences to be purchased. Our regular free software updates provide new decoders as they are released. To keep up-to-date with our latest software releases and serial decoder offerings, why not sign-up to our monthly newsletter.
*Ensure the bandwidth of your chosen PicoScope device is high enough to capture the signals you wish to decode.Key Features:
Data visualization: View decoded data in hex, binary, decimal, or ASCII directly beneath the waveform on a common time axis. Error frames are highlighted in red for quick identification and can be zoomed in for a detailed investigation of noise or signal integrity issues.
Graph format shows the decoded data beneath the waveform on a common time axis, with error frames marked in red. These frames can be zoomed to investigate noise or distortion.
Detailed table format: See a comprehensive list of decoded frames, including all data, flags, and identifiers. Use filtering to focus on specific frames or search for frames with particular properties. The statistics option gives deeper insight into the physical layer, revealing frame times and voltage levels. Click any frame in the table to zoom into its corresponding waveform.
Export and offline analysis: Easily export table view data for offline viewing and analysis, ensuring you can work with your data whenever and wherever you need.
Import: PicoScope can a spreadsheet to decode the hexadecimal data into user-defined text strings.
Discover why PicoScope is the preferred choice for professionals demanding precision and efficiency in serial decoding.
More information on Serial bus decoding and protocol analysis - overview >>
One waveform, millions of measurements
Measurement of waveform pulses and cycles is key to verification of the performance of electrical and electronic devices.
DeepMeasure delivers automatic measurements of important waveform parameters on up to a million waveform cycles with each triggered acquisition. Results can be easily sorted, analyzed and correlated with the waveform display.
Ever spotted a glitch on a waveform, but by the time you’ve stopped the scope it has gone? With PicoScope you no longer need to worry about missing glitches or other transient events. PicoScope can store the last ten thousand oscilloscope waveforms or spectrum plots in its circular waveform buffer.
The buffer navigator provides an efficient way of navigating and searching through captured waveforms, effectively letting you turn back time.
Mask limit testing allows you to compare live signals against known good signals, and is designed for production and debugging environments.
Simply capture a known good signal, draw a mask around it, and then attach the system under test. PicoScope will check for mask violations and perform pass/fail testing, capture intermittent glitches, and can show a failure count and other statistics in the Measurements window.
Use the Buffer navigator to find waveforms that violate the mask.
In this case 10 000 waveforms have been captured in the buffer. Just one of those waveforms, which violated the mask, is easily found by selecting "Mask fails on Channel A" in the navigator.
The PicoScope 5000D Series offers an industry-leading set of advanced triggers including pulse width, runt pulse, windowed and dropout.
The digital trigger available on MSO models allows you to trigger the scope when any or all of the 16 digital inputs match a user-defined pattern. You can specify a condition for each channel individually, or set up a pattern for all channels at once using a hexadecimal or binary value. You can also use the logic trigger to combine the digital trigger with an edge or window trigger on any of the analog inputs, for example to trigger on data values in a clocked parallel bus.
The majority of digital oscilloscopes still use an analog trigger architecture based on comparators. This causes time and amplitude errors that cannot always be calibrated out and often limits the trigger sensitivity at high bandwidths.
In 1991 Pico pioneered the use of fully digital triggering using the actual digitized data. This technique reduces trigger errors and allows our oscilloscopes to trigger on the smallest signals, even at the full bandwidth. Trigger levels and hysteresis can be set with high precision and resolution.
The sub-1 µs rearm delay provided by digital triggering, together with segmented memory, allows up to 10 000 waveforms to be captured in a 10 ms burst.
On PicoScope 5000D MSO models the digital channels can be used to form a logic trigger with Boolean operators.
The spectrum view plots amplitude against frequency, revealing details that would otherwise be hidden in an oscilloscope view. It is ideal for finding noise, crosstalk or distortion in signals. The spectrum analyzer in PicoScope is of the Fast Fourier Transform (FFT) type that, unlike a traditional swept spectrum analyzer, can display the spectrum of a single, non-repeating waveform. With up to a million points, PicoScope’s FFT has excellent frequency resolution and a low noise floor.
With a click of a button, you can display a spectrum plot of the active channels, with a maximum frequency up to the bandwidth of your scope. To focus on a specific frequency range, you can directly set the start and stop values of the analyzer frequency axis. A full range of settings gives you control over the number of spectrum bands (FFT bins), start/stop frequencies, scaling (including log/log) and display modes (instantaneous, average, or peak-hold). A selection of window functions allows you to optimize for selectivity, accuracy or dynamic range.
You can display multiple spectrum views alongside oscilloscope views of the same data. A comprehensive set of automatic frequency-domain measurements can be added to the display, including THD, THD+N, SNR, SINAD and IMD. You can even use the AWG and spectrum mode together to perform swept scalar network analysis.
The spectrum works with the waveform buffer so you can capture and rewind through thousands of spectrum plots or why not use the mask limit tests to scan through them all automatically? Spectrum masks can also work with PicoScope actions so you can leave the spectrum running continuously and choose to save mask fails to disk or even sound an alarm.