
Programmer's Guide

as108pg-2

8 GHz Agile Synthesizer

PicoSource® AS108

PicoSource AS108 Programmer's Guide Contents

3Copyright © 2018–2023 Pico Technology Ltd. All rights reserved.as108pg-2

Contents
1 Introduction ... 5

1 PC requirements .. 5

2 Legal information ... 6

3 Downloading and installing ... 7

4 Drivers ... 7

5 Windows 7 setup .. 7

6 Further information .. 8

2 Programming overview ... 9

1 Connecting to the device ... 9

2 Operating modes .. 10

3 Using a single device ... 11

4 Using multiple devices ... 12

5 Triggering .. 13

3 Function calls ... 14

1 picosynthCloseUnit() ... 14

2 picosynthEnumerateUnits() ... 15

3 picosynthGetUnitInfo() ... 16

1 PICO_INFO ... 16

4 picosynthOpenUnit() .. 17

5 picosynthPingUnit() .. 18

6 picosynthSetAmplitudeModulation() .. 19

7 picosynthSetArbitraryFrequencyAndLevel() ... 20

8 picosynthSetArbitraryPhaseAndLevel() .. 21

9 picosynthSetFrequency() ... 22

10 picosynthSetFrequencyAndLevelSweep() ... 23

11 picosynthSetFrequencyModulation() .. 24

12 picosynthSetOutputOff() .. 25

13 picosynthSetPhase() .. 26

14 picosynthSetPhaseAndLevelSweep() .. 27

15 picosynthSetPhaseModulation() ... 28

4 Reference .. 29

1 PICO_STATUS return values .. 29

2 Parameter limits ... 29

3 Numeric data types .. 29

4 Unit conversions .. 30

Introduction

5Copyright © 2018–2023 Pico Technology Ltd. All rights reserved.as108pg-2

PicoSource AS108 Programmer's Guide

1 Introduction
The PicoSource AS108 from Pico Technology is an 8 GHz agile signal synthesizer. Output frequency,
phase and level can be set to constant values, linearly swept values or arbitrary sequences of values.

This manual explains how to develop your own programs for setting up the PicoSource AS108 using the

picosynth.dll dynamic link library. This provides support for the control of the signal generator from
C-compatible programming languages and applications.

1.1 PC requirements
To ensure that your PicoSource AS108 operates correctly with the driver, you must have a computer with
at least the minimum system requirements to run one of the supported operating systems, as shown
below:

Item Specification

Operating system All supported versions of Windows, 32-bit or 64-bit

Processor, memory, free disk space As required by Windows

Ports USB 2.0 or USB 3.0

Introduction

6Copyright © 2018–2023 Pico Technology Ltd. All rights reserved.as108pg-2

PicoSource AS108 Programmer's Guide

1.2 Legal information
The material contained in this release is licensed, not sold. Pico Technology Ltd grants a license to the
person who installs this software, subject to the conditions listed below.

Access. The licensee agrees to allow access to this software only to persons who have been informed of
these conditions and agree to abide by them.

Usage. The software in this release is for use only with Pico products or with data collected using Pico
products.

Copyright. Pico Technology Ltd claims the copyright of, and retains the rights to, all material contained in
this software. You may copy and distribute the software without restriction, as long as you do not remove
any Pico Technology copyright statements.

Liability. Pico Technology and its agents shall not be liable for any loss, damage or injury, howsoever
caused, related to the use of Pico Technology equipment or software, unless excluded by statute.

Fitness for purpose. As no two applications are the same, Pico Technology cannot guarantee that its
equipment or software is suitable for a given application. It is your responsibility, therefore, to ensure that
the product is suitable for your application.

Mission-critical applications. This software is intended for use on a computer that may be running other
software products. For this reason, one of the conditions of the license is that it excludes use in mission-
critical applications, for example life support systems.

Viruses. This software was continuously monitored for viruses during production, but you are responsible
for virus-checking the software once it is installed.

Support. If you are dissatisfied with the performance of this software, please contact our technical
support staff, who will try to fix the problem within a reasonable time. If you are still dissatisfied, please
return the product and software to your supplier within 14 days of purchase for a full refund.

Upgrades. We provide upgrades, free of charge, from our web site at www.picotech.com. We reserve the
right to charge for updates or replacements sent out on physical media.

Trademarks. PicoSynth is a trademark, and Pico Technology, PicoSource and PicoSDK are registered
trademarks, of Pico Technology Ltd. Windows is a trademark or registered trademark of Microsoft
Corporation.

Introduction

7Copyright © 2018–2023 Pico Technology Ltd. All rights reserved.as108pg-2

PicoSource AS108 Programmer's Guide

1.3 Downloading and installing
To install the PicoSynth 2 software, including the software development kit:

1. Go to www.picotech.com > Downloads

2. Select the PicoSource product range

3. Select the PicoSource AS108 product

4. Download the PicoSynth installer

5. Run the PicoSynth installer

This will install the PicoSynth application as well as the drivers, library files and header files that you will
need to develop your own applications.

The files will be installed in your C:\Program Files\PicoSynth 2 folder, or Program Files

(x86) for the 32-bit version.

1.4 Drivers
picosynth.dll: Your application will communicate with this library, which is supplied in 32-bit and 64-

bit versions. The DLL exports the picosynth function definitions in stdcall format, which is compatible
with a wide range of programming languages.

ftdi.dll or ftd2xx64.dll: picosynth.dll depends on this DLL, which is supplied in 32-bit and

64-bit versions. Always use versions of picosynth.dll and ftdi.dll/ftd2xx64.dll with matching
word sizes: either both 32-bit or both 64-bit. The DLL must be on your dynamic linker path.

A static import library is also provided to simplify development. The import library may be statically
linked and contains code to load our dynamic libraries.

1.5 Windows 7 setup
The following extra steps are required when installing on Windows 7.

http://www.picotech.com

Introduction

8Copyright © 2018–2023 Pico Technology Ltd. All rights reserved.as108pg-2

PicoSource AS108 Programmer's Guide

1.6 Further information
For further information about your PicoSource AS108, see the following documents. All are available from
www.picotech.com.

· PicoSource AS108 Data Sheet

· PicoSource AS108 User's Guide

· PicoSource AS108 web pages

https://www.picotech.com/
https://www.picotech.com/download/datasheets/picosource-as108-agile-synthesizer-data-sheet.pdf
https://www.picotech.com/download/manuals/picosource-as108-agile-synthesizer-users-guide.pdf
https://www.picotech.com/agile-synthesizer/picosource-as108/picosource-as108-overview

Programming overview

9Copyright © 2018–2023 Pico Technology Ltd. All rights reserved.as108pg-2

PicoSource AS108 Programmer's Guide

2 Programming overview

2.1 Connecting to the device
Before opening a PicoSource AS108, you can optionally call:

· picosynthEnumerateUnits()

to obtain a list of all connected devices. If your application is expecting to find multiple devices
connected, this is a way of obtaining their serial numbers and other data before choosing which device(s)
to open.

In all cases, before using each AS108 device, you must open it by calling:

· picosynthOpenUnit()

This function returns a device ID called handle, which you then pass to all other functions in this API to
specify which device you want to communicate with.

To confirm that a device is still connected and responding, you can call:

· picosynthPingUnit()

at any time while the device is open. You can also call:

· picosynthGetUnitInfo()

to obtain more detailed information about the device.

After device setup is complete, to release the handle and allow other applications to access the device,
call:

· picosynthCloseUnit()

Programming overview

10Copyright © 2018–2023 Pico Technology Ltd. All rights reserved.as108pg-2

PicoSource AS108 Programmer's Guide

2.2 Operating modes
The AS108 can operate in the following modes:

Continuous wave (CW)
Generate a sine wave with programmable frequency, phase and level. Use either or both of the following
functions:

· picosynthSetFrequency()

· picosynthSetPhase()

Amplitude modulation (AM)
Generate a sine wave with fixed frequency and level, modulated by either the external FM/AM input or the
internal oscillator. Use the following function:

· picosynthSetAmplitudeModulation()

Frequency modulation (FM)
Generate a sine wave with fixed level, frequency-modulated by either the external FM/AM input or the
internal oscillator. Use the following function:

· picosynthSetFrequencyModulation()

Phase modulation (PM)
Generate a sine wave with fixed frequency and level, phase-modulated by either the external FM/AM input
or the internal oscillator. Use the following function:

· picosynthSetPhaseModulation()

Sweep
Generate a sine wave with a linear sweep of frequency, phase or level. Frequency and level can be swept
at the same time, as can phase and level. Use one of the following functions:

· picosynthSetFrequencyAndLevelSweep()

· picosynthSetPhaseAndLevelSweep()

Arbitrary sequence
Generate a sine wave with an arbitrary (program-specified) sequence of (frequency, level) or (phase, level)
states. These modes can be used to simulate modulation schemes such as ASK, FSK, QAM and PAM.
Use one of the following functions:

· picosynthSetArbitraryFrequencyAndLevel()

· picosynthSetArbitraryPhaseAndLevel()

Output switched off
The RF Output continually generates a sine wave unless explicitly switched off. Use the following
function:

· picosynthSetOutputOff()

Programming overview

11Copyright © 2018–2023 Pico Technology Ltd. All rights reserved.as108pg-2

PicoSource AS108 Programmer's Guide

2.3 Using a single device
Here is a typical sequence of operations for setting up the PicoSource AS108:

PICO_STATUS status;

PICO_SOURCE_MODEL model = PICO_SYNTH;

uint32_t handle;

double frequencyHz = 1e6; // 1 MHz

double powerLeveldBm = 10; // 10 dBm

// Open the first available device:

status = picosynthOpenUnit(model, &handle, NULL);

// If all is well, status will be PICO_OK, handle will contain

// device ID.

// Set output to fixed frequency and level:

status = picosynthSetFrequency(handle, frequencyHz, powerLeveldBm);

// Now that we have finished talking to the unit, close it:

status = picosynthCloseUnit(handle);

// Note: Closing the unit does not switch off its output. To do that,

// call picosynthSetOutputOff() before closing.

Programming overview

12Copyright © 2018–2023 Pico Technology Ltd. All rights reserved.as108pg-2

PicoSource AS108 Programmer's Guide

2.4 Using multiple devices
The previous example can easily be modified to use multiple devices:

PICO_STATUS status;

PICO_SOURCE_MODEL model = PICO_SYNTH;

uint32_t handle1, handle2;

uint8_t serialNumber1[8] = '9000\0',

serialNumber2[8] = '9001\0';

double frequencyHz = 1e6; // 1 MHz

double powerLeveldBm = 10; // 10 dBm

// Open devices with serial numbers '9000' and '9001':

status = picosynthOpenUnit(model, &handle1, serialNumber1);

status = picosynthOpenUnit(model, &handle2, serialNumber2);

// If all is well, status will be PICO_OK, and handle1 and handle2

// will contain device IDs. Error-checking code is not shown.

// Set outputs to fixed frequency and level:

status = picosynthSetFrequency(handle1, frequencyHz, powerLeveldBm);

status = picosynthSetFrequency(handle2, frequencyHz, powerLeveldBm);

// Now that we have finished talking to the units, close them:

status = picosynthCloseUnit(handle1);

status = picosynthCloseUnit(handle2);

// Note: Closing a unit does not switch off its output. To do that,

// call picosynthSetOutputOff() before closing.

Programming overview

13Copyright © 2018–2023 Pico Technology Ltd. All rights reserved.as108pg-2

PicoSource AS108 Programmer's Guide

2.5 Triggering
The PicoSource AS108 can generate a free-running output or wait for an external trigger on the Trig In
connector on the rear panel before generating an arbitrary sequence or a sweep.

The following functions support triggering:

· picosynthSetArbitraryFrequencyAndLevel()

· picosynthSetArbitraryPhaseAndLevel()

· picosynthSetFrequencyAndLevelSweep()

· picosynthSetPhaseAndLevelSweep()

Each of the above functions accepts a triggerMode argument that specifies the type of triggering. The
following values can be used:

· InternalTrigger: beginning of sequence or sweep is internally controlled (free-running).

· ExternalRisingEdgeStart: start sequence or sweep on a rising edge of Trig In.

· ExternalFallingEdgeStart: start sequence or sweep on a falling edge of Trig In.

· ExternalRisingEdgeStep: advance to next sequence step or sweep step on a rising edge of Trig In.

· ExternalFallingEdgeStep: advance to next sequence step or sweep step on a falling edge of Trig
In.

The AS108 always waits for the specified dwell time before responding to the next edge on Trig In. Any
edges on Trig In that occur before the specified dwell time will be ignored.

Trigger output
The Trig Out connector on the rear panel automatically generates a signal for synchronizing external
equipment with the internal sweep timing. The output is high (nominally 5 V) between sweeps, falling to 0
V (nominal) at the start of each sweep or arbitrary sequence for the duration of one sweep step or
sequence step. When no sweep or sequence is active, the output remains low.

Function calls

14Copyright © 2018–2023 Pico Technology Ltd. All rights reserved.as108pg-2

PicoSource AS108 Programmer's Guide

3 Function calls

3.1 picosynthCloseUnit()
PICO_STATUS picosynthCloseUnit

(

uint32_t handle

)

Purpose
Close the specified device. This allows other applications (including PicoSynth 2) to open it.

Closing the device does not switch off its output – the device will continue to generate the programmed
output, whether fixed, swept or in an arbitrary sequence, until powered off. Furthermore, the device will
resume generating the same output when powered on again.

Arguments

handle: the device identifier. After the function returns, handle is no longer valid.

Returns

PICO_OK (0) if call was successful. Other PICO_STATUS values indicate errors or warnings.

Function calls

15Copyright © 2018–2023 Pico Technology Ltd. All rights reserved.as108pg-2

PicoSource AS108 Programmer's Guide

3.2 picosynthEnumerateUnits()
PICO_STATUS picosynthEnumerateUnits

(

PICO_SOURCE_MODEL model,

uint8_t * serials,

uint16_t * serialLth

)

Purpose
Return a list of all connected PicoSource devices of the specified type.

Arguments

model: the type of device to search for. Only PICO_SYNTH is currently supported.

serials: on entry, a buffer of length serialLth characters; on successful exit, an ASCII text string
containing a comma-separated list of the serial numbers of all devices found:

<deviceString1>,<deviceString2>,<deviceString3>,...

deviceString1, deviceString2 and so on are in the following format:

<serialNum>[<status>;<desc>;<usbType>;<hardwareID>;<softwareVer>]

where:

serialNum is an integer formatted as a string

status is "OK" if the device can be opened, or "IN USE" if it is being used by another application

desc is a human-readable string describing the device

usbType is the USB version required by the device

hardwareID is for Pico use only

softwareVer is for Pico use only

serialLth: on entry, the length of the serials buffer;

on successful exit, the length of the serials text string.

Returns

PICO_OK (0) if call was successful. Other PICO_STATUS values indicate errors or warnings.

Function calls

16Copyright © 2018–2023 Pico Technology Ltd. All rights reserved.as108pg-2

PicoSource AS108 Programmer's Guide

3.3 picosynthGetUnitInfo()
PICO_STATUS picosynthGetUnitInfo

(

uint32_t handle,

int8_t * string,

uint16_t stringLength,

uint16_t * requiredSize,

PICO_INFO deviceInfo

)

Purpose
Read data about the specified device.

Arguments

handle: the device identifier.

string: on entry, a buffer of stringLength characters; on exit, an ASCII string containing the
requested data.

stringLength: the length of the string buffer.

requiredSize: the number of characters that would be required to store the requested data in full. If

this is greater than stringLength, the string in the string buffer will have been truncated.

deviceInfo: the type of information that you wish to read from the device. See PICO_INFO.

Returns

PICO_OK (0) if call was successful. Other PICO_STATUS values indicate errors or warnings.

3.3.1 PICO_INFO

The definitive list of PICO_INFO values is in the PicoStatus.h file, which is included in your PicoSynth
SDK. The following values apply to PicoSource AS108 devices:

info Example

0 PICO_DRIVER_VERSION Version number of picosynth.dll 2.0.1.782

1 PICO_USB_VERSION Type of USB connection to device: 1.1, 2.0
or 3.0

1.1

2 PICO_HARDWARE_VERSION Hardware version of device A31IIBHT

4 PICO_BATCH_AND_SERIAL Batch and serial number of device 7698

9 PICO_FIRMWARE_VERSION_1 Primary firmware (FPGA code) version 1.5

14 PICO_DRIVER_PATH Location of the driver in your file system C:\picosynth.dll

Function calls

17Copyright © 2018–2023 Pico Technology Ltd. All rights reserved.as108pg-2

PicoSource AS108 Programmer's Guide

3.4 picosynthOpenUnit()
PICO_STATUS picosynthOpenUnit

(

PICO_SOURCE_MODEL model,

uint32_t * handle,

uint8_t * serialNumber

)

Purpose
Open a PicoSource AS108 device. If more than matching device is connected, find each one in turn until
all available units have been opened.

Arguments

model: the type of device to search for. Only PICO_SYNTH is currently supported.

handle: on successful exit, the device identifier is written to this location.

serialNumber: on entry, either NULL or a pointer to a null-terminated string. If NULL, opens the first
available device. If a valid pointer, opens the device with the specified serial number.

Returns

PICO_OK (0) if call was successful. Other PICO_STATUS values indicate errors or warnings.

Function calls

18Copyright © 2018–2023 Pico Technology Ltd. All rights reserved.as108pg-2

PicoSource AS108 Programmer's Guide

3.5 picosynthPingUnit()
PICO_STATUS picosynthPingUnit

(

uint32_t handle

)

Purpose
Report whether the specified device is present.

Arguments

handle: the device identifier.

Returns

PICO_OK: the device responded to the request.

PICO_NOT_RESPONDING: the device did not respond.

Function calls

19Copyright © 2018–2023 Pico Technology Ltd. All rights reserved.as108pg-2

PicoSource AS108 Programmer's Guide

3.6 picosynthSetAmplitudeModulation()
PICO_STATUS picosynthSetAmplitudeModulation

(

uint32_t handle,

double frequencyHz,

double powerLeveldBm,

double modulationDepthPercent,

double modulationRateHz,

MODULATION_SOURCE modulationSource,

int16_t enabled

)

Purpose
Generate a fixed-frequency carrier with amplitude modulation (AM).

Arguments

handle: device identifier.

frequencyHz: frequency of the carrier output in hertz.

powerLeveldBm: level of the carrier output in decibel-milliwatts.

modulationDepthPercent: depth of amplitude modulation from 0 (no modulation) to 100 (maximum
modulation).

modulationRateHz: frequency of the internal modulating signal in hertz; used only if

modulationSource is set to Internal.

modulationSource: source of the modulating signal:

Internal: the built-in sine wave generator.

External: the external FM/AM modulation input.

enabled: switch amplitude modulation on or off.

Returns

PICO_OK (0) if call was successful. Other PICO_STATUS values indicate errors or warnings.

Function calls

20Copyright © 2018–2023 Pico Technology Ltd. All rights reserved.as108pg-2

PicoSource AS108 Programmer's Guide

3.7 picosynthSetArbitraryFrequencyAndLevel()
PICO_STATUS picosynthSetArbitraryFrequencyAndLevel

(

uint32_t handle,

double * arbitraryFrequencyHz,

double * arbitraryPowerLeveldBm,

int32_t numberOfPoints,

double dwellTimeUs,

TRIGGER_MODE triggerMode

)

Purpose
Generate an arbitrary sequence of (frequency,level) pairs. This can be used for simulating FSK and ASK
modulation schemes.

Procedure

1. Create two lists – * arbitraryFrequencyHz, a list of frequencies, and *

arbitraryPowerLeveldBm, a list of levels – each with numberOfPoints points.

2. Set dwellTimeUs to the time interval you require between successive points in the sweep.

3. Set triggerMode to the desired mode. You can make the synthesizer repeat the list with minimal
delay between repeats, or wait for an external input before generating the whole list, or wait for an
external input before advancing to the next step in the list.

4. Call picosynthSetArbitraryFrequencyAndLevel() with the above values.

Arguments

handle: device identifier.

arbitraryFrequencyHz: pointer to a list of frequencies, in hertz.

arbitraryPowerLeveldBm: pointer to a list of levels, in decibel-milliwatts.

numberOfPoints: number of phase and level values in the arbitraryPhaseDeg and

arbitraryPowerLeveldBm arrays. Range: 1 to 9001.

dwellTimeUs: time interval between steps in the sequence, in microseconds.

triggerMode: how the sequence will be activated. See Triggering for possible trigger modes.

Returns

PICO_OK (0) if call was successful. Other PICO_STATUS values indicate errors or warnings.

Function calls

21Copyright © 2018–2023 Pico Technology Ltd. All rights reserved.as108pg-2

PicoSource AS108 Programmer's Guide

3.8 picosynthSetArbitraryPhaseAndLevel()
PICO_STATUS picosynthSetArbitraryPhaseAndLevel

(

uint32_t handle,

double frequencyHz,

double * arbitraryPhaseDeg,

double * arbitraryPowerLeveldBm,

int32_t numberOfPoints,

double dwellTimeUs,

TRIGGER_MODE triggerMode

)

Purpose
Generate an arbitrary sequence of (phase,level) pairs. This can be used to simulate modulation schemes
such as QPSK and QAM.

Procedure

1. Create two lists – * arbitraryPhaseDeg, a list of phases, and * arbitraryPowerLeveldBm, a

list of levels – each with numberOfPoints points.

2. Set frequencyHz to the desired carrier frequency.

3. Set dwellTimeUs to the time interval you require between successive points in the sweep.

4. Set triggerMode to the desired mode. You can make the synthesizer repeat the list with minimal
delay between repeats, or wait for an external input before generating the whole list, or wait for an
external input before advancing to the next step in the list.

5. Call picosynthSetArbitraryPhaseAndLevel() with the above values.

Arguments

handle: device identifier.

frequencyHz: carrier frequency in hertz.

arbitraryPhaseDeg: pointer to a list of phase values, in degrees (0.0 to 360.0).

arbitraryPowerLeveldBm: pointer to a list of levels, in decibel-milliwatts.

numberOfPoints: number of phase and level values in the arbitraryPhaseDeg and

arbitraryPowerLeveldBm arrays. Range: 1 to 9001.

dwellTimeUs: time interval between steps in the sequence, in microseconds.

triggerMode: how the sequence will be activated. See Triggering for possible trigger modes.

Returns

PICO_OK (0) if call was successful. Other PICO_STATUS values indicate errors or warnings.

Function calls

22Copyright © 2018–2023 Pico Technology Ltd. All rights reserved.as108pg-2

PicoSource AS108 Programmer's Guide

3.9 picosynthSetFrequency()
PICO_STATUS picosynthSetFrequency

(

uint32_t handle,

double frequencyHz,

double powerLeveldBm

)

Purpose
Set the output frequency and level to fixed values.

Arguments

handle: device identifier.

frequencyHz: frequency of the output, in hertz.

powerLeveldBm: power level of the output, in decibel-milliwatts.

Returns

PICO_OK (0) if call was successful. Other PICO_STATUS values indicate errors or warnings.

Function calls

23Copyright © 2018–2023 Pico Technology Ltd. All rights reserved.as108pg-2

PicoSource AS108 Programmer's Guide

3.10 picosynthSetFrequencyAndLevelSweep()
PICO_STATUS picosynthSetFrequencyAndLevelSweep

(

uint32_t handle,

double startFrequencyHz,

double stopFrequencyHz,

double startLevel,

double stopLevel,

LEVEL_UNIT levelUnit,

double dwellTimeUs,

int32_t pointsInSweep,

SWEEP_HOP_MODE mode,

TRIGGER_MODE triggerMode

)

Purpose
Sweep the frequency and level linearly between specified limits.

Arguments

handle: device identifier.

startFrequencyHz: initial frequency of the frequency sweep, in hertz.

stopFrequencyHz: final frequency of the frequency sweep, in hertz.

startLevel: initial level of the level sweep, in units of levelUnit.

stopLevel: final level of the level sweep, in units of levelUnit.

levelUnit: units in which startLevel and stopLevel are expressed –

VoltsRms, VoltsPkToPk, Dbm or MilliWatts.

dwellTimeUs: time between changes in frequency and level, in microseconds.

pointsInSweep: number of steps from beginning to end of sweep.

mode: the type of sweep to generate:

SweepAndFlyback: sweep from start values to stop values, then return to start values and repeat.

BidirectionalSweep: sweep from start values to stop values, then return in the opposite direction,
then repeat.

Hop: jump repeatedly between start values and stop values with no intermediate steps.

triggerMode: how the sweep will be activated. See Triggering for possible trigger modes.

Returns

PICO_OK (0) if call was successful. Other PICO_STATUS values indicate errors or warnings.

Function calls

24Copyright © 2018–2023 Pico Technology Ltd. All rights reserved.as108pg-2

PicoSource AS108 Programmer's Guide

3.11 picosynthSetFrequencyModulation()
PICO_STATUS picosynthSetFrequencyModulation

(

uint32_t handle,

double frequencyHz,

double powerLeveldBm,

double modulationDeviationHz,

double modulationRateHz,

MODULATION_SOURCE modulationSource,

int16_t enabled

)

Purpose
Generate a fixed-amplitude carrier with frequency modulation (FM).

Arguments

handle: device identifier.

frequencyHz: frequency of the output carrier in hertz.

powerLeveldBm: level of the output in decibel-milliwatts.

modulationDeviationHz: maximum deviation from the carrier frequency, in hertz.

modulationRateHz: frequency of the internal modulating signal in hertz; used only if

modulationSource is set to Internal.

modulationSource: source of the modulating signal:

Internal: the built-in sine wave generator.

External: the external FM/AM modulation input.

enabled: switch frequency modulation on or off.

Returns

PICO_OK (0) if call was successful. Other PICO_STATUS values indicate errors or warnings.

Function calls

25Copyright © 2018–2023 Pico Technology Ltd. All rights reserved.as108pg-2

PicoSource AS108 Programmer's Guide

3.12 picosynthSetOutputOff()
PICO_STATUS picosynthSetOutputOff

(

uint32_t handle

)

Purpose
Switch off the RF output of the specified device.

To switch the RF output back on, call any other function that generates an output.

Arguments

handle: the device identifier .

Returns

PICO_OK (0) if call was successful. Other PICO_STATUS values indicate errors or warnings.

Function calls

26Copyright © 2018–2023 Pico Technology Ltd. All rights reserved.as108pg-2

PicoSource AS108 Programmer's Guide

3.13 picosynthSetPhase()
PICO_STATUS picosynthSetPhase

(

uint32_t handle,

double phaseDeg

)

Purpose
Set the output phase to a fixed value. When the synthesizer starts generating a particular frequency, the
phase is defined as zero.

Arguments

handle: device identifier.

phaseDeg: phase of the output, in degrees (0.0 to 360.0).

Returns

PICO_OK (0) if call was successful. Other PICO_STATUS values indicate errors or warnings.

Function calls

27Copyright © 2018–2023 Pico Technology Ltd. All rights reserved.as108pg-2

PicoSource AS108 Programmer's Guide

3.14 picosynthSetPhaseAndLevelSweep()
PICO_STATUS picosynthSetPhaseAndLevelSweep

(

uint32_t handle,

double frequencyHz,

double startPhaseDeg,

double stopPhaseDeg,

double startLevel,

double stopLevel,

LEVEL_UNIT levelUnit,

double dwellTimeUs,

int32_t pointsInSweep,

SWEEP_HOP_MODE mode,

TRIGGER_MODE triggerMode

)

Purpose
Sweep the phase and level linearly between specified limits.

Arguments

handle: device identifier.

frequencyHz: carrier frequency in hertz.

startPhaseDeg: initial phase of the frequency sweep, in degrees (0.0 to 360.0).

stopPhaseDeg: final phase of the frequency sweep, in degrees (0.0 to 360.0).

startLevel: initial level of the level sweep, in units of levelUnit.

stopLevel: final level of the level sweep, in units of levelUnit.

levelUnit: units in which startLevel and stopLevel are expressed –

VoltsRms, VoltsPkToPk, Dbm, MilliWatts.

dwellTimeUs: time between changes in frequency and level, in microseconds.

pointsInSweep: number of steps from beginning to end of sweep.

mode: the type of sweep to generate:

SweepAndFlyback: sweep from start values to stop values, then return to start values and repeat.

BidirectionalSweep: sweep from start values to stop values, then return in the opposite direction,
then repeat.

Hop: jump repeatedly between start values and stop values with no intermediate steps.

triggerMode: how the sweep will be activated. See Triggering for possible trigger modes.

Returns

PICO_OK (0) if call was successful. Other PICO_STATUS values indicate errors or warnings.

Function calls

28Copyright © 2018–2023 Pico Technology Ltd. All rights reserved.as108pg-2

PicoSource AS108 Programmer's Guide

3.15 picosynthSetPhaseModulation()
PICO_STATUS picosynthSetPhaseModulation

(

uint32_t handle,

double frequencyHz,

double powerLeveldBm,

double modulationDeviationDeg,

double modulationRateHz,

MODULATION_SOURCE modulationSource,

int16_t enabled

)

Purpose
Generate a fixed-amplitude carrier with phase modulation (PM).

Arguments

handle: device identifier.

frequencyHz: frequency of the output carrier in hertz.

powerLeveldBm: level of the output in decibel-milliwatts.

modulationDeviationDeg: maximum phase change, in degrees.

modulationRateHz: frequency of the internal modulating signal in hertz; used only if

modulationSource is set to Internal.

modulationSource: source of the modulating signal:

Internal: the built-in sine wave generator.

External: the external modulation input.

enabled: switch phase modulation on or off.

Returns

PICO_OK (0) if call was successful. Other PICO_STATUS values indicate errors or warnings.

Reference

29Copyright © 2018–2023 Pico Technology Ltd. All rights reserved.as108pg-2

PicoSource AS108 Programmer's Guide

4 Reference

4.1 PICO_STATUS return values
Every function in this API returns a PICO_STATUS value. The default value is PICO_OK (0), if the call

was successful. This and other values are defined in the PicoStatus.h file included with your software.

4.2 Parameter limits
The following limits apply to all functions in this API.

Parameter Unit Min Value Max Value

Frequency kHz 300 8 192 000

Frequency step
kHz

0.000 1 (300 kHz to 125 MHz)
0.01 (> 125 MHz to 4 GHz)
0.02 (> 4 GHz)

8 192 000

Power level (into 50 Ω) dBm - 15 +15

V RMS 0.039 8 1.26

V pk-pk 0.112 3.56

mW 0.031 6 31.6

Phase deg 0 360

Number of points in sweep 1 2 10 001

Dwell time µ s 26 65 500

Modulation frequency Hz 10 5 000

AM depth, 0 dBm carrier % 5 90

AM depth, > 0 to 9 dBm carrier % 5 50

FM deviation % 0 2

kHz 0 200

4.3 Numeric data types
Type Bits Signed or unsigned?

int8_t 8 signed

int16_t 16 signed

uint16_t 16 unsigned

enum 32 enumerated

int32_t 32 signed

uint32_t 32 unsigned

float 32 signed (IEEE 754 binary32)

double 64 signed (IEEE 754 binary64)

int64_t 64 signed

uint64_t 64 unsigned

Reference

30Copyright © 2018–2023 Pico Technology Ltd. All rights reserved.as108pg-2

PicoSource AS108 Programmer's Guide

4.4 Unit conversions
Some picosynth functions support multiple units of measurement. If you need to do your own
conversions, use the following formulae:

where:

PdBm = power in decibel-milliwatts

PmW = power in milliwatts

ERMS = RMS voltage

EPP = peak-to-peak voltage

UK headquarters: USA regional office:

Pico Technology
320 N Glenwood Blvd
Tyler
TX 75702
United States

Pico Technology
James House
Colmworth Business Park
St. Neots
Cambridgeshire
PE19 8YP
United Kingdom

Tel: +44 (0) 1480 396 395

sales@picotech.com
support@picotech.com

Tel: +1 800 591 2796

sales@picotech.com
support@picotech.com

Asia-Pacific regional office:

Pico Technology
Room 2252, 22/F, Centro
568 Hengfeng Road
Zhabei District
Shanghai 200070
PR China

Germany regional office and EU Authorized Representative:

Pico Technology GmbH
Im Rehwinkel 6
30827 Garbsen
Germany

Tel: +49 (0) 5131 907 62 90

info.de@picotech.com

Tel: +86 21 2226-5152

pico.asia-pacific@picotech.com

www.picotech.com

as108pg-2

Copyright © 2018–2023 Pico Technology Ltd. All rights reserved.

	1 Introduction
	1.1 PC requirements
	1.2 Legal information
	1.3 Downloading and installing
	1.4 Drivers
	1.5 Windows 7 setup
	1.6 Further information

	2 Programming overview
	2.1 Connecting to the device
	2.2 Operating modes
	2.3 Using a single device
	2.4 Using multiple devices
	2.5 Triggering

	3 Function calls
	3.1 picosynthCloseUnit()
	3.2 picosynthEnumerateUnits()
	3.3 picosynthGetUnitInfo()
	3.3.1 PICO_INFO

	3.4 picosynthOpenUnit()
	3.5 picosynthPingUnit()
	3.6 picosynthSetAmplitudeModulation()
	3.7 picosynthSetArbitraryFrequencyAndLevel()
	3.8 picosynthSetArbitraryPhaseAndLevel()
	3.9 picosynthSetFrequency()
	3.10 picosynthSetFrequencyAndLevelSweep()
	3.11 picosynthSetFrequencyModulation()
	3.12 picosynthSetOutputOff()
	3.13 picosynthSetPhase()
	3.14 picosynthSetPhaseAndLevelSweep()
	3.15 picosynthSetPhaseModulation()

	4 Reference
	4.1 PICO_STATUS return values
	4.2 Parameter limits
	4.3 Numeric data types
	4.4 Unit conversions

