PicoScope 9000 Series
PC Sampling Oscilloscopes
Programmer's Guide
Contents

1 PicoScope 9000 API Reference ... 1
 1 PicoScope9000 COM Server .. 1
 2 ExecCommand Method ... 1
 3 COMRC Object .. 1

2 Commands Syntax ... 2
 1 Command and Query Structure ... 2
 1 Overview ... 2
 2 Messages ... 2
 3 Commands .. 3
 4 Queries .. 3
 5 Headers ... 3
 2 Command Entry ... 4
 1 Rules ... 4
 2 Concatenating ... 4

3 Command Classification .. 6
 1 Execution-type commands ... 6
 2 On/off-type commands .. 6
 3 On/off-group-type commands ... 6
 4 Selector-type commands .. 8
 5 Integer-type commands .. 8
 6 Float-type commands ... 8
 7 Data-type commands .. 9

4 Full list of commands ... 10
 1 Header commands .. 10
 2 GUI commands .. 10
 3 System commands .. 10
 4 Channels commands .. 11
 5 Timebase commands ... 13
 6 Trigger commands .. 14
 7 Acquisition commands .. 16
 8 Display commands .. 18
 9 Save/Recall commands ... 20
 1 Work with Memo Zones (M1, M2, M3, M4) ... 20
 2 Work with Disk .. 21
 3 Work with Setups ... 22
 10 Markers commands ... 23
 11 Measure commands .. 24
 1 Measurements of Time Domain Signals .. 24
 2 Measurements of Spectrum Signals .. 29
 3 Getting Measurement Results .. 31
 12 Limit Tests commands .. 31
 13 Mathematics commands .. 37
14 FFT commands ... 39
15 Histogram commands ... 40
 1 Setting Histogram Parameters ... 40
 2 Getting Results of Histogram ... 44
16 Mask Test commands ... 45
 1 Common Mask Commands .. 45
 2 Standard Mask Commands ... 47
 3 Getting Mask Results ... 48
17 Eye Diagram commands ... 49
 1 Setting Eye Parameters ... 49
 2 Getting Eye Measurement Results ... 52
18 Utilities commands ... 53
19 Waveforms commands .. 55
20 System commands .. 56
5 Programming Examples ... 59
 1 Delphi ... 59
 2 LabVIEW ... 59
 3 Visual Basic .NET ... 60
Index ... 61
1 PicoScope 9000 API Reference

PicoScope 9000 provides an API for any third-party application or library to control the oscilloscope and collect signals. The API is \textit{COM-based} and is provided by the PicoScope 9000 GUI application.

1.1 PicoScope9000 COM Server

The COM server implementing the API is called \textit{PicoScope9000} and is implemented by the PicoScope 9000 GUI application (PicoScope9000.exe). It is registered in the system during the setup process, and can be explicitly unregistered and registered again by executing PicoScope9000.exe with the /UnregServer or /RegServer switches.

1.2 ExecCommand Method

The COMRC object contains only one method: \textit{ExecCommand}. The method has one argument—a text string with a command or query. The method returns:

- \textit{NULL} (\textit{Nothing} in Visual Basic) if a command without query has been successfully executed
- The text string \textit{“ERROR”} if the command was invalid
- Another text string with query results if the command was a query or a command with query

The syntax of the commands and query, as well as the full list of commands, is described in the following pages.

1.3 COMRC Object

To implement the API the server exposes only one object, which is called \textit{COMRC}. The object supports automation, so it can be used by high-level languages like JavaScript (HTML pages) or VBA (Microsoft Word). However, low-level languages like C are also supported. The string defining the system-wide name of the object and used for object creation is \textit{"PicoScope9000.COMRC"}.
2 Commands Syntax

2.1 Command and Query Structure

2.1.1 Overview

PicoScope 9000 commands consist of set commands and query commands (usually called commands and queries). Commands modify instrument settings or tell the instrument to perform a specific action. Queries cause the instrument to return data and information about its status.

Most commands have both a set form and a query form. The query form of the command differs from the set form by a question mark at the end. For example, the set command:

```
ACQuire:Ch1:MODe
```

has a query form:

```
ACQuire:Ch1:MODe?.
```

Not all commands have both a set and a query form. Some commands have set only and some have query only.

2.1.2 Messages

A command message is a command or query name followed by any information the instrument needs to execute the command or query. Command messages may contain five element types, as defined in the following table.

<table>
<thead>
<tr>
<th>Command message elements</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><Header></td>
<td>This is the basic command name. If the header ends with a question mark, the command is query. The header may begin with a colon (:) character. If the command is concatenated with other commands, the beginning colon is required.</td>
</tr>
<tr>
<td></td>
<td><Mnemonic></td>
<td>This is a header of the sub-function. Some command headers have only one mnemonic. If a command header has multiple mnemonics, a colon (:) character always separates item from each other.</td>
</tr>
<tr>
<td></td>
<td><Argument></td>
<td>This is a quantity, quality, restriction or limit associated with the header. Some commands have no arguments while others have multiple arguments. A space separates arguments from the header. A comma separates arguments from each other.</td>
</tr>
<tr>
<td></td>
<td><Comma></td>
<td>A single comma is used between arguments of multiple-argument commands. Optionally, there may be white space characters before and after the comma.</td>
</tr>
<tr>
<td></td>
<td><Space></td>
<td>A white space character is used between a command header and its argument. Optionally, a white space may consist of multiple white space characters.</td>
</tr>
</tbody>
</table>
2.1.3 Commands
Commands cause the instrument to perform a specific function or change one of its settings. Commands have the structure:

[:<Header>[<Space><Argument>[<Comma><Argument>]]...]

A command header consists of one or more mnemonics arranged in a hierarchical or tree structure. The first mnemonic is the base or root of the tree and each subsequent mnemonic is a level or branch off the previous one. Commands at a higher level in the tree may affect those at a lower level. The leading colon (:) always returns you to the base of the command tree.

2.1.4 Queries
Queries cause the instrument to return information about its status or settings. Queries have the structure:

- [:<Header>]
- [:<Header>][<Space><Argument>[<Comma><Argument>]]...

You can specify a query command at any level within the command tree unless otherwise noted. These branch queries return information about all the mnemonics below the specified branch or level. For example,

HISTogram:STATistics:STDdev?
returns the standard deviation of the histogram, while

HISTogram:STATistics?
returns all the histogram statistics, and

HISTogram?
returns all the histogram parameters.

2.1.5 Headers
You can control whether the instrument returns headers as part of the query response. Use the HEADer command to control this feature. If header is on, the query response returns command headers and formats itself as a valid set command. When the header is off, the response includes only the values. This may make it easier to parse and extract the information from the response. The table below shows the difference in responses.

<table>
<thead>
<tr>
<th>Comparison of Header Off and Header On Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Ch1:Scale?</td>
</tr>
<tr>
<td>Acq:Ch1:RecLen?</td>
</tr>
</tbody>
</table>
2.2 Command Entry

2.2.1 Rules
The following rules apply when entering commands:

- You can follow a mnemonic by any letters for more easy understanding of the program’s text. For example, the commands:

 Ch1:ATTEN:DIMENS Volt

 Ch1:ATTENuator:DIMENSion Volt

 Ch1:ATTENbla bla:DIMEN Sbla bla Volt

 are equivalent. However, arguments must be written without any following letter.

- You can precede any command with white space characters. White space characters include any combination of the ASCII control characters 00 to 09, and 0B to 20 hexadecimal (0 to 9, and 11 to 32 decimal).

- The instrument ignores commands consisting of any combination of white space characters and line feeds.

2.2.2 Concatenating
You can concatenate any combination of set commands and queries using a semicolon (;). The instrument executes concatenated commands in the order received. When concatenating commands and queries, you must follow these rules:

- Separate completely different headers by a semicolon and by the beginning colon on all commands except the first one. For example, the commands

 TRIGger:MODE FREE
 ACQuire:NUMAVg 10

 can be concatenated into the following single command:

 TRIGger:MODE FREE;:ACQuire:NUMAVg 10

- If concatenated commands have headers that differ by only the last mnemonic, you can abbreviate the second command and eliminate the beginning colon. For example, you can concatenate the commands:

 ACQuire:Ch1:MODE ENVMINMAX
 ACQuire:Ch1:NAVG 10

 into a single command:

 ACQuire:Ch1:MODE ENVMINMAX; NAVG 10

 The longer version works equally well:

 ACQuire:CH1:MODE ENVMINMAX;:ACQuire:NAV 10
Set commands and queries may be concatenated in the same message. For example:

```
ACQuire:CH1:MODE AVGSTAB;NAVG?
```

is a valid message that sets the acquisition mode to Stable Averaging. The message then queries the number of acquisitions for averaging. Concatenated commands and queries are executed in the order received.

- Here are some invalid concatenations:

```
DISPlay:STYlE DOTS;ACQuire:NAVG 10
```

(no colon before ACQuire)

```
DISPlay:STYlE DOTS;:FORMAT YT
```

(extra colon before FORMAT; use DISPlay:STYlE DOTS;FORMAT YT instead)

```
Acq:Ch1:Mode Sample;Ch1:RecLen 1024
```

(levels of the mnemonics are different; either remove the second use of Ch1: or place :Acq: in front of Ch1:)

3 Command Classification

Most commands can be related to one of a few types. For example, the execution-type commands tell the instrument to perform a specific action; the selector-type commands modify a specific instrument setting to the one of few fixed values, and so on. All commands of a given type have similar behavior.

3.1 Execution-type commands

The execution-type commands tell the instrument to perform a specific action. For example:

*Run
*C1rDispl

There are no arguments for these commands.

All execution-type commands have a 'set' form only, and not a 'query' form.

3.2 On/off-type commands

The on/off-type commands tell the instrument turn on or turn off a specific function. For example:

Header Off
Ch1:Display 0

There are four fixed arguments possible in these commands: On, Off, 0, 1. Arguments On and 1 are equivalent and turn on the corresponding function. Arguments Off and 0 are also equivalent and turn off the specific function.

All on/off-type commands have a query form. The queries return one of two fixed values: ON or OFF. It is also possible to use the query form with an argument. For example:

Ch1:Display? 0

This command turns off the graphic of Channel 1 and returns OFF.

3.3 On/off-group-type commands

Some functions of the instrument have items that may be set independently on or off. It is also possible for the items to be either all on or all off. An example of this type of command is:

Meas:Ch1:XParam

This command has a set of parameters for automatic X-axis measurements for Ch1. It is possible to select up to 10 parameters from a list of 18: Period, Freq, PosWidth, NegWidth, Rise, Fall, PosDuty, NegDuty, PosCross, NegCross, BurstWidth, Cycles, TimeOfMax, TimeOfMin, PosJitterPp, PosJitterRMS, NegJitterPp, NegJitterRMS.

There are between 2 and 64 custom items in the on/off-group-type commands. The full set of items is specified for each commands in the list of commands.
The on/off-group-type commands can be used in several modes. Every such command can be used in every mode.

Single-item mode

Single-item mode is used to control one command’s item without changing the other items. In this case the item’s mnemonic is added to the end of command after a colon (:) character. This must be followed by a space character and then one of the following arguments: On, Off, 0, 1. For example, the next command turns on a frequency measurement for Channel 1:

```
Meas:Ch1:XParam:Freq 1
```

Single-item mode has a query form similar to the On-Off commands. So, the query:

```
Meas:Ch1:XParam:Period 1
```

or

```
Meas:Ch1:XParam:Freq?
```

returns either ON or OFF.

Group-on mode

Multi-item mode is used to simultaneously turn on a custom group of items. In this case the :Include mnemonic is added to the end of the command. This is then followed by a space and a few items separated by commas (,). For example, the next command turns on rise time and fall time measurements for Channel 1:

```
Meas:Ch1:XParam:Include Rise,Fall
```

Group-off mode

Multi-item-off mode is used to simultaneously turn off a custom group of items. In this case the :Exclude mnemonic is added to the end of the command. This is then followed by a space and a few items separated by commas. For example, the next command turns off frequency and period measurements for Channel 1:

```
Meas:Ch1:XParam:Exclude Freq,Period
```

All-off mode

All-off mode is used for simultaneously turning off all items. In this case the :ClearAll mnemonic is added to the end of the command. For example, the next command turns off all measurements for Channel 1:

```
Meas:Ch1:XParam:ClearAll
```

Group-on, Group-off and All-off modes do not have a query form.

Group-query mode

Group-query mode is used find out which items are currently turned on. This mode has only the query form. For example:

```
Meas:Ch1:XParam?
```
The answer may be `ClearAll`—if all items are turned off; or one or more items separated by comma (,). For example, the answer `Freq, Period` means two turned on items.

3.4 Selector-type commands

The selector-type commands modify a specific instrument setting to one of a few fixed values. For example:

```
Trig:Source
```

has these possible arguments:

```
Direct, ExtHF, IntClock;
```

and

```
Trig:Mode
```

has these possible arguments:

```
Free, Trig
```

Between 2 and 32 custom arguments are available for these commands. The full set of arguments is specified for each command in the list of commands.

The selector-type commands have a query form. It is possible to use the query form with an argument; for example,

```
Trig:Source? Direct
```

This command sets the Direct input as the trigger source and returns `DIRECT`.

3.5 Integer-type commands

The integer-type commands modify specific integer-value functions. For example, the command:

```
Acq:Ch1:RecLen 1024
```

sets the length of Channel 1 signals to 1024 points. The valid range and increment of each value is different and is described in the list of commands.

The integer-type commands have a query form. It is possible to use the query form with an argument; for example:

```
Acq:Ch1:RecLen? 24
```

returns 32, since 32 is the minimum valid length of a signal.

3.6 Float-type commands

The float-type commands modify specific real-value functions. For example, the command:

```
Ch1: Scale 0.1
```
sets the Y-scale for Channel 1 to 100 mV/div. The valid range and increment of each value is different and is described in the list of commands.

Float-type commands have a query form. It is also possible to use the query form with an argument; for example:

```
Ch1:Scale? 0.1
```

returns 100 mV/div, when V/div is dimension of the scale, and the prefix m is milli.

The commands:

```
TB:ScaleA? 0.0000001
TB:ScaleA? 100e-9
TB:ScaleA? 0.1u
TB:ScaleA? 100p
```

are equivalent and set the Scale A of the timebase to the value 100 ns/div. All of these commands return 100 ns/div.

3.7 Data-type commands

The data-type commands are used to send some data to the instrument or to receive some data from the instrument, such as an acquired signal’s array of points, the result of a measurement, and so on.

Some data-type commands have a query form only, while others have both a command and a query form. The structure of the data is different for each command and is specified in the list of commands.
4 Full list of commands
All of the PicoScope 9000 API commands are listed below, organised by type.

4.1 Header commands
Header: Header
Type: On/Off
Action: Enable/disable headers as part of the query response.

4.2 GUI commands
Header: Gui
Type: Selector type command
Arguments: RemoteLocal, RemoteOnly, Invisible
Action: Set the behavior of the GUI when it controls by COM-object
Version: This command can be used with PicoScope SW v.2.3.2 or later.

4.3 System commands
 Clear Display
Header: *ClrDispl
Type: Execution
Action: Clear Display immediately.

 Start Cycle Acquisition
Header: *Run
Type: Execution
Action: Run the instrument

 Start Single Acquisition / Stop Acquisition
Header: *StopSingle
Type: Selector
Arguments: Stop, Single
Action: Single - Start a single acquisition
 Stop – Immediately stop the acquisition
Response: Stop – the instrument is stopped
 Single – the instrument is in the acquisition state
Start Autoscaling
Header: *Autoscale
Type: Selector
Arguments: Auto, SingleVal, NRZ, RZ
Action: set the type of signal and start autoscaling of the instrument
Response: selected type of signals.

Recall Default Setup
Header: *DefSetup
Type: Execution
Action: Restore the instrument to its Default Setup

4.4 Channels commands

Display a Channel
Header: Ch1:Display; Ch2:Display
Type: On/Off
Action: turn on or turn off the display of corresponding channel’s signal

Acquire a Channel
Header: Ch1:Acquire; Ch2:Acquire
Type: On/Off
Action: turn on or off the acquisition of the channel’s signal when its display is turned off

Scale a Channel
Header: Ch1:Scale; Ch2:Scale
Type: Float
Argument: 0.002 to 0.5, or other when attenuator is used
Action: set the specified display scale in V/div

Offset a Channel
Header: Ch1:Offset; Ch2:Offset
Type: Float
Argument: -1 to +1, or other when attenuator is used
Action: set the specified compensation voltage of the channel in V
Bandwidth of Channel

Header: Ch1:Band; Ch2:Band
Type: Selector
Arguments: Full, Narrow
Action: set the bandwidth of the channel

Attenuator linear/log

Header: Ch1:Atten:Unit; Ch2:Atten:Unit
Type: Selector
Arguments: Off, Ratio, DB
Action: set presence and scale of attenuator or converter used with the channel

Attenuator ratio

Header: Ch1:Atten:Ratio; Ch2:Atten:Ratio
Type: Float
Argument: 0.0001 to 1000000
Action: set the attenuation ratio. This setting is active only when attenuator unit is 'ratio'

Attenuator dB

Header: Ch1:Atten:DB; Ch2:Atten:DB
Type: Float
Argument: -80 to +120
Action: set the attenuation in dB. This setting is active only when attenuator units is decibels.

Attenuator unit

Header: Ch1:Atten:Dimens; Ch2:Atten:Dimens
Type: Selector
Arguments: Volt, Watt, Ampere, Unknown
Action: set the units of the converter used with the channel
4.5 Timebase commands

Timebase Units

Header: TB:Units
Type: Selector
Arguments: Time, Bit
Action: set units of timebase to s/div or bit/div

Timebase mode

Header: TB:Mode
Type: Selector
Arguments: A, AB, B
Action: set main, intensified, or delayed timebase

Main timebase scale, sec/div

Header: TB:ScaleA
Type: Float
Argument: 10e-12 to 50e-3
Action: set scale of the main timebase when time units are used

Delayed timebase scale, sec/div

Header: TB:ScaleB
Type: Float
Argument: 10e-12 to 50e-3
Action: set scale of delayed timebase when time units are used

Main timebase scale, bit/div

Header: TB:BitScaleA
Type: Float
Argument: depends on actual bit rate
Action: set scale of main timebase when bit units are used

Delayed timebase scale, bit/div

Header: TB:BitScaleB
Type: Float
Argument: depends on actual bit rate
Action: set scale of delayed timebase when bit units are used

Timebase delay

Header: TB:Delay
Type: Float
Argument: 0 to 10
Action: set delay of intensified, delayed timebase in divisions

Dual delayed timebase

Header: TB:DualDel
Type: On/off
Action: turn on or off the dual delayed time base (used in intensified or delayed timebase)

Timebase delta delay

Header: TB:DeltaDel
Type: Float
Argument: 0 to 10
Action: set delta delay of intensified, delayed timebase in divisions (used in dual delayed timebase)

4.6 Trigger commands

Trigger Source

Header: Trig:Source
Type: Selector
Arguments: Direct, ExtHF, IntClock, ClockRecov
Action: set trigger source

Direct Input Trigger Level

Header: Trig:ExtLevel
Type: Float
Argument: -1 to +1
Action: set trigger level for direct input, volts

Trigger Period for Internal Clock Sources

Header: Trig:IntRate
Type: Float
Argument: 16e-9 to 0.002
Action: set period for internal clock trigger source, seconds

Trigger Mode

Header: Trig:Mode
Type: Selector
Arguments: Free, Trig
Action: set Freerun or Triggered mode of the trigger

Direct Trigger Slope

Header: Trig:Slope
Type: Selector
Arguments: Pos, Neg
Action: set Positive or Negative slope of trigger

Holdoff Time

Header: Trig:Holdoff
Type: Float
Argument: 5e-6 to 1
Action: set the holdoff time, seconds

Direct Trigger Hysteresis

Header: Trig:Hister
Type: Selector
Arguments: Norm, HighSens
Action: set hysteresis for direct trigger (Norm) or set off (HighSens)

Attenuator Unit for Direct Input

Header: Trig:Atten:Unit
Type: Selector
Arguments: Off, Ratio, DB
Action: set presence and unit of attenuator or converter used with direct trigger input

Direct Input Attenuation (ratio)

Header: Trig:Atten:Ratio
Type: Float
Argument: 0.0001 to 1000000
Action: set attenuation ratio. This setting is active only when attenuator unit is ratio.

Direct Input Attenuation (dB)

Header: Trig:Atten:DB
Type: Float
Argument: -80 to +120
Action: set the attenuation in dB. This setting is active only when attenuator unit is decibels.

4.7 Acquisition commands

Type of signal

Header: Acq:FitTo
Type: Selector
Arguments: Multi, Single
Action: prepare the instruments for best acquisition of single-valued or multi-valued

Sampling Mode

Header: Acq:Sampl
Type: Selector
Arguments: Simult, Altern
Action: Simult - set simultaneous acquisition on Channels 1 and 2
Alternate - set alternate acquisitions on Channels 1 and 2

Acquisition Mode of Channel

Header: Acq:Ch1:Mode; Acq:Ch2:Mode
Type: Selector
Arguments: Sample, AvgStab, AvgMult, EnvMinMax, EnvMax, EnvMin
Action: set acquisitions mode of specified channel

Channel Averaging

Header: Acq:Ch1:NAvg, Acq:Ch2:NAvg
Type: Integer
Argument: 1, 2, 4, 8, 16, ... 4096
Action: set averaging coefficient for specified channel

Channel Envelopes
Header: Acq:Ch1:NEnv, Acq:Ch2:NEnv
Type: Integer
Argument: 1, 2, 4, 8, 16, ... , 4096, 8192
Action: set number of signals for envelope mode for specified channel. Argument 8192 is used for unlimited number of signals.

Channel Record Length
Header: Acq:Ch1:RecLen, Acq:Ch2:RecLen
Type: Integer
Argument: 32, 64, 128, ... , 4096
Action: set number of points for specified channel

Termination of Acquisition
Header: Acq:RunUntil
Type: Selector
Arguments: StopBtn; NAcq
Action: set condition for terminating acquisition – when the Stop Button pressed or after specified number of waveforms is reached

Number of Waveforms
Header: Acq:NAcq
Type: Integer
Argument: 1 to 65535
Action: set number of signals for terminating acquisition

Action when Number of Waveforms reached
Header: Acq:React
Type: On/off-group
Items: Beep, Save
Action: if Save is turned on, every signal is stored to disk; if Beep is turned on, the beep signal will sound after the specified number of waveforms is reached
4.8 Display commands

Mnemonic <src> in some Display Commands signifies Source
(<src> is: Ch1, Ch1B2, Ch2, Ch2B2, F1, F2, F3, F4, M1, M2, M3, M4, S1, S2)

Trace mode

Header: Displ:TraceMode
Type: Selector
Arguments: AllLocked, PerTrace
Action: in PerTrace mode, every waveform may be displayed in its own style;
in AllLocked mode, the display style of all waveforms is set as the
style of the active trace

Select active trace

Header: Displ:TraceSel
Type: Selector
Arguments: Ch1, Ch1B2, Ch2, Ch2B2, F1, F2, F3, F4, M1, M2, M3, M4, S1, S2, XY
Action: select active trace for AllLocked trace mode

Set Display Style

Header: Displ:<src>:Style
Type: Selector
Arguments: Dots, Vectors, VarPersist, InfinPers, VarGrayScal, InfGrayScal,
VColorGrad, IColorGrad
Action: set display style for specified trace in PerTrace mode;
set display style for all traces in AllLocked mode if <src> equal to
the active trace, or do nothing if <src> not equal to the active trace

Persistence Time, seconds (for VarPersist Style)

Header: Displ:<src>:PersistTime
Type: Float
Argument: 0.1 to 20
Action: set persistence time for specified trace in PerTrace mode;
set persistence time for all traces in AllLocked mode if <src> is
equal to the active trace, or do nothing if <src> not equal to the active trace
Refresh Time, seconds (for VarGrayScal or VColorGrade Styles)

Header: Displ:<src>:RefreshTime
Type: Float
Argument: 1 to 200
Action: set refresh time for specified trace in PerTrace mode; set refresh time for all traces in AllLocked mode if <src> equal to the active trace, or do nothing if <src> not equal to the active trace

Reset Display Style

Header: Displ:ResetAll
Type: Execution
Action: Reset Display Styles to initial state (variable persistence 2 c)

Display Format

Header: Displ:Format
Type: Selector
Arguments: YT, 2YT, 4YT, XY, CombYTXY, Comb2YTXY
Action: select number and kinds of screens

Define Trace Screen (for 4YT Format)

Header: Displ:Screen4:<trace>, where <trace> is Ch1, Ch1B2, Ch2, Ch2B2, F1, F2, F3, F4, M1, M2, M3, M4, S1, S2, Hist
Type: Selector
Arguments: 1, 2, 3, 4
Action: move specified trace onto specified screen in 4YT format

Define Trace Screen (for 2YT, Comb2YTXY Formats)

Header: Displ:Screen2:<trace>, where <trace> is Ch1, Ch1B2, Ch2, Ch2B2, F1, F2, F3, F4, M1, M2, M3, M4, S1, S2, Hist
Type: Selector
Arguments: 1, 2
Action: move specified trace onto specified screen in 2YT or Comb2YTXY formats

Source of X Axis for XY Screen

Header: Displ:XAxis
Type: Selector
Arguments: Ch1, Ch1B2, Ch2, Ch2B2, F1, F2, F3, F4, M1, M2, M3, M4, S1, S2
Action: set specified signal as X axis for XY screen

Source of Y Axis for XY Screen

Header: Displ:YAxis
Type: Selector
Arguments: Ch1, Ch1B2, Ch2, Ch2B2, F1, F2, F3, F4, M1, M2, M3, M4, S1, S2
Action: set specified signal as Y axis for XY screen

Graticule Type

Header: Displ:Gratic
Type: Selector
Arguments: Grid, Frame, Axis, Off
Action: define type of graticule for YT and XY screens

4.9 Save/Recall commands

4.9.1 Work with Memo Zones (M1, M2, M3, M4)

Memory Display

Header: Save:Memo:On
Type: On/off-group
Items: M1, M2, M3, M4
Action: control display of memory zones

Source for storing into Memory

Header: Save:Memo:Source
Type: Selector
Arguments: Ch1, Ch1B2, Ch2, Ch2B2, F1, F2, F3, F4, M1, M2, M3, M4, S1, S2
Action: define signal as source for storing into memory zone

Select Memory for Saving

Header: Save:Memo:ToMemo
Type: Selector
Arguments: M1, M2, M3, M4
Action: define memory zone for saving

Save into Memory

Header: Save:Memo:Save
Type: Execution
Action: store selected source into selected memory

4.9.2 Work with Disk

Source for saving to file

Header: Save:Memo:Source
Type: Selector
Arguments: Ch1, Ch1B2, Ch2, Ch2B2, F1, F2, F3, F4, M1, M2, M3, M4, S1, S2
Action: define signal as source for saving to file

File Name

Header: Save:Disk:FileName
Type: Data
Argument: text string
Forms: command, query, command with query
Action: define file name for saving specified signal to disk

File Name Mode

Header: Save:Disk:NameMode
Type: Selector
Arguments: Manual, Auto
Action: set file name mode. In Auto mode the file name consists of a base name followed by a underscore (_) and a five-digit number. Each time you save a waveform, the number in the file name is automatically incremented. For example: basename_00001.wfm, basename_00002.wfm, basename_00003.wfm and so on.

Format of stored files

Header: Save:Disk:FileFormat
Type: Selector
Arguments: Binary, Verbose, YOnly
Action: set file format

Save to Disk

Header: Save:Disk:Save
Type: Execution
Action: save selected source to previously specified file

Select Memory for loading signal from disk

Header: Save:Disk:ToMemo
Type: Selector
Arguments: M1, M2, M3, M4
Action: selects which of the available memory locations the instrument loads the saved file into

Load

Header: Save:Disk:Load
Type: Execution
Action: load the previously specified disk file into the previously specified Memory Zone

4.9.3 Work with Setups

Recall Factory Setup

Header: Save:Setup:RecFact
Type: Execution
Action: returns instrument to manufacturer's default setting

Recall Power-Off Setup

Header: Save:Setup:RecLast
Type: Execution
Action: returns instrument to last setting before power supply was last switched off

Save Setup as Default

Header: Save:Setup:SvAsDefault
Type: Execution
Action: stores present front-panel setup as default setup
Name of Custom Setup File

Header: Save:Setup:FileName
Type: Data
Argument: text string
Forms: command, query, command with query
Action: define file name for storing Custom Setup

Save Custom Setup

Header: Save:Setup:Save
Type: Execution
Action: stores present front-panel setup as previously specified custom setup

Recall Custom Setup

Header: Save:Setup:Recall
Type: Execution
Action: recall setup previously saved to file. The name of the setup must first be defined by the command Save:Setup:FileName.

4.10 Markers commands

Marker Type

Header: Mark:Type
Type: Selector
Arguments: Off, MX, MY, XY
Action: set marker type

Marker Sources

Header: Mark:M1:Source, Mark:M2:Source
Type: Selector
Arguments: Ch1, Ch1B2, Ch2, Ch2B2, F1, F2, F3, F4, M1, M2, M3, M4, S1, S2
Action: attach specified marker to specified signal

X position of Marker

Header: Mark:M1:XPos, Mark:M2:XPos
Type: Float
Argument: real value of X-axis
Action: set the X position of specified marker

Y position of Marker

Header: Mark:M1:YPos, Mark:M2:YPos
Type: Float
Argument: real value of Y-axis
Action: set Y position of specified marker

Motion of Markers

Header: Mark:Motion
Type: Selector
Arguments: Independ, Paired
Action: when Paired motion is selected, you can move both markers with the M1 POSITION variable simultaneously, while the difference between markers can be moved with the M2 POSITION variable.

4.11 Measure commands

The mnemonic <src> in some Measure Commands signifies the Source (<src> is: Ch1, Ch1B2, Ch2, Ch2B2, F1, F2, F3, F4, M1, M2, M3, M4, S1, S2)

4.11.1 Measurements of Time Domain Signals

Measurement Type

Header: Meas:Display
Type: Selector
Arguments: Off, Param, Statistic
Action: set measurement type

Measurement Source

Header: Meas:DisplSrc
Type: Selector
Arguments: Ch1, Ch1B2, Ch2, Ch2B2, F1, F2, F3, F4, M1, M2, M3, M4, S1, S2
Action: set source for Measurement

Viewing of Define Parameters

Header: Meas:View
Type: On/off
Action: set visibility of 'define parameters' markers for selected sources

Measurement Mode

Header: Meas:Mode
Type: Selector
Arguments: Permanent, Single
Action: set measurement mode

Execute Single Measurement

Header: Meas:SingleMeas
Type: Execution
Action: execute single measurement in Single mode

Statistic Measurement Mode

Header: Meas:StatMode
Type: Selector
Arguments: Permanent, Window, Weight
Action: set Statistic Measurement mode

Windows Value

Header: Meas:Window
Type: Integer
Argument: 8 to 8192
Action: set number of recently acquired waveforms for Window mode of Statistic Measurement

Weight Value

Header: Meas:Weight
Type: Integer
Argument: 8 to 8192
Action: set weight variable for Weight mode of Statistic Measurement

Top/Base Definition Method

Header: Meas:<src>:Method
Type: Selector
Arguments: Hist, MinMax, Marker
Action: sets Top and Base vertical reference thresholds for amplitude measurements of specified signals

Top Value for Marker Method

Header: Meas:<src>:Top
Type: Integer
Argument: 2 to 1023
Action: sets Top vertical reference threshold for specified signals. Argument 0 corresponds to the bottom of the screen, and argument 1023 corresponds to the top of the screen independently of the real screen's height

Base Value (for Marker Method)

Header: Meas:<src>:Base
Type: Integer
Argument: 1 to 1022
Action: sets Base vertical reference threshold for specified signals. Argument 0 corresponds to the bottom of the screen, and argument 1023 corresponds to the top of the screen independent of the real screen's height.

Threshold Definition Method

Header: Meas:<src>:Thresh
Type: Selector
Arguments: 10-90, 20-80, Custom
Action: sets lower, middle, and upper thresholds for measurements of the specified signals. May be set to the fixed values 10%-50%-90%; 20%-50%-80%; or custom values.

Threshold Units

Header: Meas:<src>:Unit
Type: Selector
Arguments: Percent, Volt, Division
Action: sets units of thresholds for specified signals. It used for custom threshold definition method only.

Position of Upper, Middle or Lower Threshold

Headers:

Meas:<src>:UpThresh
Meas:<src>:MidThresh
Meas:<src>:LowThresh

Type: Float
Arguments:
 absolute voltage value (for Volt threshold units only)
 -4 to +4 (for Division threshold units only)
Action: sets the threshold position for the specified signals

Percentage of Upper, Middle or Lower Threshold

Headers:
Meas:<src>:UpThPerc
Meas:<src>:MidThPerc
Meas:<src>:LowThPerc

Type: Integer
Arguments: -80 to +200
Action: sets the threshold percentage for the specified signals. It used for Percent threshold units only. Argument 0 (%) correspond to the Base of the signals, and argument 100 (%) corresponds to the Top of the signals.

Margins Definition Mode

Header: Meas:<src>:MargMode

Type: Selector
Arguments: Slope, Marker
Action: sets margins definition mode

Slope of Left or Right Margins

Headers:
Meas:<src>:LeftSlope
Meas:<src>:RightSlope

Type: Integer
Arguments: 0 to 127
Action: sets the margin for the specified signals on the specified slope. It used for slope margins definition mode only. Argument 0 means the first rise, value 1 is first fall, 2 – second rise; 3 – second fall, and so on.
Thresholds of Left and Right Margin Slopes

Headers:

```
Meas:<src>:LeftTresh
Meas:<src>:RightTresh
```

Type: Selector

Arguments: Upper, Middle, Lower

Action: sets the thresholds for definitions of the left or right slope. It used for slope margins definition mode only.

Position of Left or Right Margin

Headers:

```
Meas:<src>:LeftMarker
Meas:<src>:RightMarker
```

Type: Float

Arguments: absolute time value

Action: sets the position of margin for the specified signals. It used for marker margins definition mode only.

List of X Measurements

Header: Meas:<src>:XParam

Type: On/off-group

Items: Period, Freq, PosWidth, NegWidth, Rise, Fall, PosDuty, NegDuty, PosCross, NegCross, BurstWidth, Cycles, TimeOfMax, TimeOfMin, PosJitterPp, PosJitterRMS, NegJitterPp, NegJitterRMS

Action: define the set of the X-axis measurements for the specified signals

List of Y Measurements

Header: Meas:<src>:YParam

Type: On/off-group

Items: Max, Min, PP, Top, Base, Ampl, Middle, Mean, dcRMS, acRMS, Area, CycMean, CycDcRMS, CycAcRMS, CycArea, PosOver, NegOver

Action: define the set of the Y-axis measurements for the specified signals

Second Source for Inter-Signal Measurements

Header: Meas:Source2
4.11.2 Measurements of Spectrum Signals

Limits Definition Method for Spectrum

Header: Meas:<src>:FFTMethod

Type: Selector

Arguments: Harmonic, Peak

Action: sets the method of the limits definition for the specified signal. It used for spectrum signals only.

Left and Right Spectrums Margin

Headers:

- Meas:<src>:FFTLeft
Meas:<src>:FFTRight
Type: Float
Arguments: absolute frequency value
Action: sets the position of margin for the specified spectrum signals. It used for searching for peak 1 of the spectrum for the Harmonic method.

Peak Level of Spectrum

Header: Meas:<src>:PeakLevel
Type: Float
Arguments: -100 to +80 (dBV)
Action: sets the level for the specified spectrum signals. It used for searching a peak of the spectrum for the Peak method.

Left and Right Spectrum Peaks

Headers:

- Meas:<src>:PeakLeft
- Meas:<src>:PeakRight
Type: Integer
Arguments: 1 to 41
Action: sets the first and second peaks for the specified spectrum signals

List of Spectrum Frequency Measurements

Header: Meas:<src>:XFFTPar
Type: On/off-group
Items: Freq, DFreq
Action: define the set of the frequency measurements for the specified signals

List of Spectrum Magnitude Measurements

Header: Meas:<src>:YFFTPar
Type: On/off-group
Items: Magn, DMagn, TDH
Action: define the set of the magnitude measurements for the specified signals
4.11.3 Getting Measurement Results

Get List of Measured Parameters

Header: `Meas:Res:List?`
Type: Data
Argument: none
Forms: query only
Action: return text with the list of the active measurements for all signals with ordinal index

Get Current Value of Parameter

Header: `Meas:Res:<N>?`
Parameter `<N>`: index of the parameter in the list
Type: Data
Argument: none
Forms: query only
Action: return the last result of the specified measured parameter

Get Statistic Value of Parameter

Header: `Meas:Res:<N>:<Val>?`
Parameter `<N>`: index of the parameter in the list
Parameter `<Val>`: Wfm, Min, Max, Mean, StdDev
Type: Data
Arguments: none
Forms: command with query only
Action: return the specified statistic parameter of the measured parameter

4.12 Limit Tests commands

Limit Test On/Off

Header: `Limit:TestOn`
Type: On/off
Action: Enable/disable the Limit Test. Must be set On after full definition of all other Limit Test parameters.
Limit Test Termination Condition

Header: Limit:RunUntil

Type: Selector

Arguments: StopBtn, Failur, Wfm

Action: set condition of Limit Test Termination

Number of Failures

Header: Limit:Failures

Type: Integer

Argument: 1 to 10000

Action: set number of failures for the Failur Condition of the Limit

Number of Waveforms

Header: Limit:NWfms

Type: Integer

Argument: 1 to 1000000

Action: set the number of waveforms for the Ffm Condition of the Limit

Action

Header: Limit:Action

Type: On/off-group

Items: Beep, Save, Stop

Action: Save: every signal with a limit condition is stored to the disk;
Beep: the beep signal will sound for every limit condition;
Stop: acquisition immediately stops after the first limit condition

Action If

Header: Limit:If

Type: Selector

Arguments: AnyFail, AllPass, AllFail, AnyPass

Action: define the limit condition:
AnyFail – one or more active measures fails;
AllPass - all active measures are good;
AllFail - all active measures fail;
AnyPass – one or more active measurements is good
Format of Stored Files

Header: Limit:FileFormat
Type: Selector
Arguments: Binary, Verbose, YOnly
Action: set file format

File Name

Header: Limit:FileName
Type: Data
Argument: text string
Forms: command, query, command with query
Action: define file name for saving the specified signals to disk

Parameter Activity

Headers:

Limit1:Activ
Limit2:Activ
Limit3:Activ
Limit4:Activ
Type: On/off
Action: Enable/disable the Limit Test for relevant parameter

Parameter Limit Mode

Headers

Limit1:Mode
Limit2:Mode
Limit3:Mode
Limit4:Mode
Type: Selector
Arguments: Center, Limit
Action: set mode of limits for the relevant parameter
Upper and Lower Limits of Parameters

Headers:

- Limit1:UpLimit
- Limit1:LowLimit
- Limit2:UpLimit
- Limit2:LowLimit
- Limit3:UpLimit
- Limit3:LowLimit
- Limit4:UpLimit
- Limit4:LowLimit

Type: Float

Arguments: absolute value of limit

Action: sets the limit's value. It is used only for Limit mode of the parameter's limit.

Parameter Center Mode

Headers:

- Limit1:CenterMode
- Limit2:CenterMode
- Limit3:CenterMode
- Limit4:CenterMode

Type: Selector

Arguments: CurrMean, UserDef

Action: set the mode of the center definition for the relevant parameter. It used only for the Center mode of the parameter limit.

Center Value

Headers:

- Limit1:CenterVal
- Limit2:CenterVal
- Limit3:CenterVal
- Limit4:CenterVal

Type: Float

Arguments: absolute value of center

Action: set the absolute center value. It used for UserDef mode of the center of the parameter.
Parameter Delta Mode

Headers:

Limit1:Delta
Limit2:Delta
Limit3:Delta
Limit4:Delta

Type: Selector
Arguments: StdDev, UserDef, UserPerc
Action: set mode of delta definition for relevant parameter. It used for Center mode of parameter limit only.

Parameter Delta Value for Standard Deviation mode

Headers:

Limit1:StdDev
Limit2:StdDev
Limit3:StdDev
Limit4:StdDev

Type: Float
Arguments: 0.1 to 100 standard deviations of the parameter
Action: sets the delta value. It used for StdDev mode of parameter delta only.

Parameter Delta Value for User Defined Mode

Headers:

Limit1:UserDef
Limit2:UserDef
Limit3:UserDef
Limit4:UserDef

Type: Float
Arguments: absolute value of delta
Action: sets the delta value. It used for UserDef mode of delta of the parameter only.
Parameter Delta Percentage for User Defined mode

Headers:

Limit1:UserPerc
Limit2:UserPerc
Limit3:UserPerc
Limit4:UserPerc

Type: Float
Arguments: 0.01% to 90% standard deviations of the parameter
Action: sets the delta value. It used for UserPerc mode of delta of the parameter only.

Failure When

Headers:

Limit1:FailWhen
Limit2:FailWhen
Limit3:FailWhen
Limit4:FailWhen

Type: Selector
Arguments: Outside, Inside, Always
Action: set the mode of the quality control for the according parameter

If Measurement Undefined

Headers:

Limit1:NotFound
Limit2:NotFound
Limit3:NotFound
Limit4:NotFound

Type: Selector
Arguments: Ignore, Fail, Pass
Action: set limit status when measurement is undefined
4.13 Mathematics commands

Enable Mathematical Function

Headers:

F1: Display
F2: Display
F3: Display
F4: Display

Type: On/off
Action: enable/disable the calculation and display of the relevant functions

Function Operator

Headers:

F1: Operat
F2: Operat
F3: Operat
F4: Operat

Type: Selector
Arguments: Add, Sub, Mult, Div, Invert, Abs, Exp_e, Exp_10, Log_e, Log_10, Dif_al, Int_al, IFFT, LinInt, SinInt, Smooth, Trend
Action: set the operator of the specified function

Operand 1

Headers:

F1: Source1
F2: Source1
F3: Source1
F3: Source1

Type: Selector
Arguments: Ch1, Ch1B2, Ch2, Ch2B2, F1, F2, F3, F4, M1, M2, M3, M4, S1, S2
Action: set the first operand of the specified function

Operand 2
Headers:

F1:Source2
F2:Source2
F3:Source2
F4:Source2

Type: Selector

Arguments: Ch1, Ch1B2, Ch2, Ch2B2, F1, F2, F3, F4, M1, M2, M3, M4, S1, S2, Const

Action: set the second operand of the specified function. Used for Add, Sub, Mult, Div operators only.

Constant Value

Headers:

F1:Const
F2:Const
F3:Const
F4:Const

Type: Float

Arguments: absolute value of constant

Action: set the constant for the specified function. Used when Const is the second operand.

Smoothing Parameter

Headers:

F1:SmoothLen
F2:SmoothLen
F3:SmoothLen
F4:SmoothLen

Type: Integer

Argument: 3, 5, 7, 9, ... , 49, 51

Action: set the length of the smoothing interval in points for specified function. Used for Smooth operator only.

Trend Measurement
Headers:

F1:TrendMeas
F2:TrendMeas
F3:TrendMeas
F4:TrendMeas

Type: Selector

Arguments: Period, Freq, PosWidth, NegWidth, RiseTime, FallTime, PosDuty, NegDuty

Action: set the kind of trend for the specified function. Used for Trend operator only.

4.14 FFT commands

Enable Spectra

Headers:

Spectr1:Display
Spectr2:Display

Type: On/off

Action: enable/disable the calculation and display of the relevant spectrum

Spectrum Source

Headers:

Spectr1:Source1
Spectr2:Source1

Type: Selector

Arguments: Ch1, Ch1B2, Ch2, Ch2B2, F1, F2, F3, F4, M1, M2, M3, M4

Action: set the source of the specified spectrum

Window

Headers:

Spectr1:Window
Spectr2:Window
Spectr3:Window
Spectr4:Window
Type: Selector
Arguments: Rectang, Hamming, Hanning, Flattop, BlackHarr, KaiserBess
Action: set the window for specified spectrum

4.15 Histogram commands
4.15.1 Setting Histogram Parameters

Histogram Axis
Header: Hist:Axis
Type: Selector
Arguments: Off, Vert, Horiz
Action: set axis of histogram

Histogram Source
Header: Hist:Source
Type: Selector
Arguments: Ch1, Ch1B2, Ch2, Ch2B2, F1, F2, F3, F4, M1, M2, M3, M4, S1, S2
Action: select specified signal as source of histogram

Histogram Visibility
Header: Hist:Visible
Type: On/off
Action: set visibility of histogram. Acquisition of the histogram proceeds independently of this command.

Histogram Finish Condition
Header: Hist:RunUntil
Type: Selector
Arguments: StopSingle, Wfms, Samples
Action: set finish condition for acquiring histogram

Number of Waveforms for Histogram
Header: Hist:NWfm
Type: Integer
Argument: 1 to 1000000
Action: set number of signals for termination of histogram acquisition

Number of Samples for Histogram

Header: Hist:NSample
Type: Integer
Argument: 1 to 10000000
Action: set number of samples for termination of histogram acquisition

Limit Mode for Histogram Window

Header: Hist: Limits
Type: Selector
Arguments: Paried, Independ
Action: set the mode of the limits of histogram window

Limit Units for Histogram Window

Header: Hist: Units
Type: Selector
Arguments: Absolute, Percent
Action: set the units of the limits of histogram window

Left and Right Window Limits for Vertical or Horizontal Histogram

Headers:
Hist:WVert:Left
Hist:WVert:Right
Hist:WHor:Left
Hist:WHor:Right
Type: Float
Argument: real value of the X-axis (for Absolute units)
0% to 100% of the X-axis (for Percent units)
Action: set the X positions of the histogram window

Top and Bottom Window Limits for Vertical or Horizontal Histogram

Headers:
Hist:WVert:Top
Hist:WVert:Bottom
Hist:WHor:Top
Hist:WHor:Bottom
Type: Float
Argument: real value of the Y-axis (for Absolute units)
0% to 100% of the Y-axis (for Percent units)
Action: set the Y positions of the histogram window

Window Visibility

Header: Hist:Display
Type: On/off
Action: set visibility of the window

Calculation Mode

Header: Hist:Mode
Type: Selector
Arguments: Normal, Exponent
Action: set mode of histogram calculation

Weight for Exponential Calculation

Header: Hist:Weight
Type: Integer
Argument: 8, 16, 32, ..., 8192
Action: set the number of signals for termination of acquisition

Scale Type

Header: Hist:ScaleType
Type: Selector
Arguments: Linear, Logarith
Action: set the type of the histogram scale

Scale Mode

Header: Hist:ScaleMode
Type: Selector
Arguments: Auto, Manual
Action: set the mode of the histogram scale

Linear Scale of Vertical or Horizontal Histogram

Headers: Hist:VertScale
Hist:HorScale
Type: Float
Argument: (10 to 100) %/div
Action: set the scale of the histogram. Used for Manual mode and Linear type of scale only.

Linear Offset of Vertical or Horizontal Histogram

Headers: Hist:VertOffset
Hist:HorOffset
Type: Float
Argument: 0% to 100%
Action: set the offset of the histograms. It used for Manual mode and Linear type of scale only.

Logarithmic Scale of Vertical or Horizontal Histogram

Headers: Hist:VertDBScale
Hist:HorDBScale
Type: Float
Argument: (6 to 60) dB/div
Action: set the scale of the histograms. Used for Manual mode and Logarith type of scale only.

Logarithmic Offset of Vertical or Horizontal Histogram

Headers: Hist:VertDBOffs
Hist:HorDBOffs
Type: Float
Argument: (-60 to 0) dB
Action: set the offset of the histograms. Used for Manual mode and Logarith type of scale only.
4.15.2 Getting Results of Histogram

Get Histogram Data

Headers: Hist:Data:Vert?

Hist:Data:Hor?

Type: Data

Argument: none

Forms: query only

Action: return text string with values of the histogram (comma-separated)

Get Histogram Measurement

Headers: Hist:Res:<Param>?

Parameter <Param>:

- InBox - Number of Hints in Box
- Wfm - Number of Waveforms
- Peak - Peak Value of Histogram
- PP - Difference between highest and lowest Values of Signal
- Median - Centre between highest and lowest Values of Signal
- Mean - Average of Distribution of Histogram
- StdDev - Standard Deviation of Histogram
- Mean1S - number of hints in Mean ± StdDev Region, %
- Mean2S - number of hints in Mean ± 2StdDev Region, %
- Mean3S - number of hints in Mean ± 3StdDev Region, %
- Min - Min. Value of Signal
- Max - Max. Value of Signal
- Max-Max - Difference between two maxima of histogram

Type: Data

Argument: none

Forms: query only

Action: return text string with value of the specified parameters
4.16 Mask Test commands

4.16.1 Common Mask Commands

Mask Erasing

Header: Mask:EraseMask
Type: Execution
Action: Clear the current mask from the display

Signal for Mask Testing

Header: Mask:CompareWith
Type: Selector
Arguments: Ch1, Ch2
Action: select the signal for mask testing

Actuate Mask Testing

Header: Mask:Test
Type: On/off
Action: enable/disable mask test execution

User Masks File Name

Header: Mask:MaskFile
Type: Data
Argument: text string
Forms: command, query, command with query.
Action: define the file name for next loading of the user mask from the disk

Load User Mask

Header: Mask:LoadUser
Type: Execution
Action: load the previously specified user mask

Mask Test Finish Condition

Header: Mask:RunUntil
Type: Selector
Arguments: StopBtn, FailedWfms, FailedSmpls, Wfms, Samples
Action: set condition of Mask Test Termination
Number of Failed Waveforms

Header: Mask:FailWfms
Type: Integer
Argument: 1 to 1000000
Action: set the number of the failed waveforms for the FailedWfms finish condition

Number of Failed Samples

Header: Mask:FailSmpls
Type: Integer
Argument: 1 to 1000000
Action: set the number of failed samples for the FailedSmpls finish condition

Number of Waveforms

Header: Mask:NWfms
Type: Integer
Argument: 1 to 1000000
Action: set number of waveforms for the Wfms finish condition

Number of Samples

Header: Mask:NSamples
Type: Integer
Argument: 1 to 1000000
Action: set number of samples for the Samples finish condition

Mask Test Actions

Header: Mask:Action
Type: On/off-group
Items: Beep, Save
Action: Save: every failed signal is stored to disk
Beep: the beep signal will sound for every failed signal

Format of Stored Files

Header: Mask:FileFormat
Type: Selector
Arguments: Binary, Verbose, YOnly
Action: set file format. Used when Save action is on.

Stored File Name
Header: Mask:FileName
Type: Data
Argument: text string
Forms: command, query, command with query
Action: define file name for storing failed signals on Disk. Used when Save action is on.

4.16.2 Standard Mask Commands

Alignment of Signal with Standard Mask
Header: StdMask:Align
Type: On/off
Action: enable/disable alignment of the tested signal with the standard mask parameters

Enable Margins
Header: StdMask:MarginsOn
Type: On/off
Action: enable/disable the margin control of eye-type masks

Margins Value
Header: StdMask:MarginsVal
Type: Float
Arguments: -100% to +100%
Action: set the margins value. Used when margins is enabled.

Get List of Standards
Header: StdMask:StdsList?
Type: Data
Argument: none
Forms: query only
Action: return list of mask standards with ordinal index
Select Standard
Header: StdMask:StdIndex
Type: Integer
Argument: 0 to (number of standards-1)
Action: select the current standard by its ordinal index

Get List of Masks
Header: StdMask:MasksList?
Type: Data
Argument: none
Forms: query only
Action: return list of masks with ordinal index from the selected standard

Select Standard Mask
Header: StdMask:MaskIndex
Type: Integer
Argument: 0 to (number of masks in the current standard-1)
Action: load the specified mask by its ordinal index

4.16.3 Getting Mask Results

Get Integrated Results of Mask Test
Headers: Mask:Res:<Param>?
Parameter <Param>:
- AllWfm - number of waveforms
- FailWfm - number of failed waveforms
- AllSmpl - number of samples
- FailSmpl - number of failed samples

Type: Data
Argument: none
Forms: query only
Action: return text string with value of the specified parameter

Get Number of Samples in Selected Polygons
Headers: Mask:Res:Poly<N>?
Parameter <N>: number of the polygon, 1 to 8

Type: Data
Argument: none
Forms: query only
Action: return text string with value of failed samples on specified polygon

Get Number of Samples in Margins of Selected Polygon

Headers: Mask:Res:Poly<N>Mar?
Parameter <N>: number of the polygon, 1 to 4
Type: Data
Argument: none
Forms: query only
Action: return text string with value of failed samples on margin of specified polygon. Used when Margins enabled.

Get Number of Samples in Selected Polygon with Margins Together

Headers: Mask:Res:Poly<N>All?
Parameter <N>: number of the polygon, 1 to 4
Type: Data
Argument: none
Forms: query only
Action: return text string with total number of failed samples on the margin and on the specified polygon. Used when Margins enabled.

4.17 Eye Diagram commands
4.17.1 Setting Eye Parameters

Type of Eye Measurements

Header: Eye:Measure
Type: Selector
Arguments: Off, NRZ, RZ
Action: set type of eye measurements

Source for Eye Measurements

Header: Eye:Source
Type: Selector
Arguments: Ch1, Ch1B2, Ch2, Ch2B2, F1, F2, F3, F4, M1, M2, M3, M4, S1, S2
Action: set source for eye measurements

Number of Waveforms in One Measurement

Header: Eye:WfmsInCycle
Type: Integer
Argument: 64, 128, 256, 512, 1024
Action: set number of waveforms in one measurement

Eye Frame Visibility

Header: Eye:DispaylWind
Type: On/off
Action: set visibility of eye frame

Measurement Statistics

Header: Eye:Statistic
Type: On/off
Action: enable/disable measurement statistics

Measurement Statistics Mode

Header: Eye:Mode
Type: Selector
Arguments: Permanent, Window, Weight
Action: set mode of statistics calculation. Used when statistics enabled.

Window Value

Header: Eye:Window
Type: Integer
Argument: 8, 16, 32, ..., 8192
Action: set window value. Used for Window mode of statistics.

Weight Value

Header: Eye:Weight
Type: Integer
Argument: 8, 16, 32, ..., 8192
Action: set weight value. Used for Weight mode of statistics.

Left and Right Boundary for NRZ Top/Base Finding

Headers: Eye: LeftBound
 Eye: RightBound

Type: Float
Argument: 10% to 90% of the NRZ period
Action: set the zone of the period of the NRZ signal for the top/base calculation.

Threshold Definition Mode

Header: Eye: TreshMode

Type: Selector
Arguments: 10–90, 20–80, Custom
Action: set mode of threshold definition

Upper and Lower Threshold

Headers: Eye: UpTresh
 Eye: LowTresh

Type: Float
Argument: 5% to 95% of amplitude
Action: set the thresholds for the slopes calculation. Used for Custom mode only.

List of X-axis NRZ Measurements

Header: Eye: XNRZParam

Type: On/off-group
Items: Area, BitRate, BitTime, CrossTime, CycleArea, DutCycDistP, DutCycDistS, EyeWidth, EyeWidthP, FallTime, Freq, JitterPP, JitterRMS, Period, RiseTime
Action: define the set of the X-axis measurements for NRZ signals.

List of Y-axis NRZ Measurements

Header: Eye: YNRZParam

Type: On/off-group
Items: AcRMS, AvgPower, AvgPWdBm, CrossPerc, CrossLevel, ExtRatioDB, ExtRatioP, ExtRatio, EyeAmpl, EyeHeight, EyeHeightDB, Max, Mean, Mid, Min, NegOver, PPNoiseOne, PPNoiseZero, RMSNoiseOne, RMSNoiseZero, OneLevel, PeakPeak, PosOver, RMS, SNRaio, SNRaioDB, ZeroLevel

Action: define the set of Y-axis measures for NRZ signals

List of X-axis RZ Measurements

Header: Eye:XRZParam

Type: On/off-group

Items: Area, BitRate, BitTime, CycleArea, EyeWidth, EyeWidthP, FallTime, JittPpFall, JittPpRise, JittRMSFall, JittRMSRise, NegCross, PosCross, PosDutyCyc, PulseSymm, PulseWidth, RiseTime

Action: define the set of X-axis measurements for RZ signals

List of Y-axis RZ Measurements

Header: Eye:YRZParam

Type: On/off-group

Items: AcRMS, AvgPower, AvgPWdBm, Contrast, ContrastBb, ContrastP, ExtRatioDB, ExtRatioP, ExtRatio, EyeAmpl, EyeHeight, EyeHeightDB, EyeOpenFact, Max, Mean, Mid, Min, PPNoiseOne, PPNoiseZero, RmsNoiseOne, RMSNoiseZero, OneLevel, PeakPeak, RMS, SignToNoise, ZeroLevel

Action: define the set of the Y-axis measures for RZ signals.

4.17.2 Getting Eye Measurement Results

Get List of Measured Parameters

Header: Eye:Res:List?

Type: Data

Argument: none

Forms: query only

Action: return list of active eye measurements with ordinal index

Get Current Value of Parameter

Header: Eye:Res:<N>?

Parameter <N>: index of parameter in the list

Type: Data
Argument: none
Forms: query only
Action: return the result of the specified measured parameter

Get Statistic Value of Parameter

Header: Eye:Res:<N>:<Val>?
Parameter <N>: index of the parameter in the list
Parameter <Val>: Wfm, Min, Max, Mean, StdDev
Type: Data
Arguments: none
Forms: command with query only
Action: return the specified statistical parameter of the measured parameter

4.18 Utilities commands

Start Autocalibration of Channels

Header: Flash:Calibr:AutocalCh
Type: Execution
Action: Start self-calibration of channels

Start Autocalibration of Timebase

Header: Flash:Calibr:AutocalTB
Type: Execution
Action: Start self-calibration of timebase

Get the Autocalibration status query

Header: Flash:Calibr:AutocalResult?
Type: Integer
Action: Command is ignored, query returns an integer:

0 - Autocalibration finished OK;
1 – Signal must be disconnected from Ch1 Input. Autocalibration of the Channels is aborted.
2 – Signal must be disconnected from Ch2 Input. Autocalibration of the Channels is aborted.
3 – Signal must be disconnected from Ch1 and Ch2 Inputs. Autocalibration of the Channels is aborted.
5 - Autocalibration failed.

Version: This query can be used with PicoScope 9000 SW v.2.3.2 or later.

When to Begin Autocalibration

Header: Util:CalibrWhen

Type: On/off-group

Items: PowerOn, Period, Temperat

Action: PowerOn: autocalibration begins on the next Power On;
Period: autocalibration begins periodically with the specified interval;
Temperat: autocalibration begins when deviation of temperature inside the instrument exceeds the specified value

Note for the PicoScope 9000 SW v.2.3.2 or later.

When the GUI is in Invisible or RemoteOnly state the autocalibration routine can not be performed spontaneously and independently on this command (see at the GUI command above).

Autocalibration Period

Header: Util:CalPeriod

Type: Float

Argument: 0.5 to 16 hours

Action: sets autocalibration period in hours

Temperature Deviation

Header: Util:TempChange

Type: Float

Argument: 0.5 to 10 °C

Action: sets temperature deviation for autocalibration

Get the Temperature of the Instrument query

Header: Calibr:Temperature?

Type: Float

Argument: none

Forms: query only

Action: return the temperature inside the device in degrees Celsius

Version: This command can be used with PicoScope 9000 SW v.2.4.1 or later
4.19 Waveforms commands

This group of commands is designed for receiving acquired waveforms from the oscilloscope.

Waveform Source

Header: Wfm:Source
Type: Selector
Arguments: Ch1, Ch1B2, Ch2, Ch2B2, F1, F2, F3, F4, M1, M2, M3, M4, S1, S2
Action: set the signal to be received

Spectrum Format

Header: Wfm:Complex
Type: Selector
Arguments: Mod, Ph, Re, Im
Action: select the received component of the complex signal. Used for spectrum data.

Get Waveform Data

Header: Wfm:Data?
Type: Data
Argument: none
Forms: query only
Action: return text string with values of all points of the signal (comma-separated)

Get Number of Points in Waveform

Header: Wfm:Preamb:Poin?
Type: Data
Argument: none
Forms: query only
Action: return number of points in signal

Get X-axis Step

Header: Wfm:Preamb:XInc?
Type: Data
Argument: none
Forms: query only
Action: return the increment on the X-axis for one signal point

Get X-axis Origin
Header: Wfm:Preamb:XOrg?
Type: Data
Argument: none
Forms: query only
Action: return the X-axis value for the first signal point

Get X-axis Unit
Header: Wfm:Preamb:XU?
Type: Data
Argument: none
Forms: query only
Action: return the X-axis physical units

Get Y-axis Unit
Header: Wfm:Preamb:YU?
Type: Data
Argument: none
Forms: query only
Action: return the Y-axis physical units

4.20 System commands
This group of commands is used to control devices in a multi-instrument system.

Count of Instruments in the system query
Header: Instr:List:Count?
Type: Integer
Argument: none
Forms: query only
Action: return the number of devices in the system
Version: This command can be used with PicoScope 9000 SW v.2.4.0 or later
Get a description of device number N query

Header: `Instr:List:Unit:N?`

when `N = 0..count of instruments-1`

Type: Data

Argument: none

Forms: query only

Action: return the description of the instrument number `N` in the format:

```
N;User_Name[Sys_Name];Interface;IP
```

where:

- `N` - number of devices in the system
- `User_Name` - user name of the Instrument, optional
- `Sys_Name` - system name of the Instrument from the list "ABSENT, DEFAULT_DEMO, DEFAULT_LAN, DEFAULT_USB, DEMO2, DEMO3, UNIT1, UNIT2, UNIT3, UNIT4, UNIT5, UNIT6, UNIT7, UNIT8"

- `Interface` - type of the interface from the list: "NONE, DEMO, LAN, USB"
- `IP` - IP-address, for LAN interface only

Version: This command can be used with PicoScope 9000 SW v.2.4.0 or later.

Get the name of the current device query

Header: `Instr:Current:Get?`

Type: Data

Argument: none

Forms: query only.

Action: return the name of the current instrument in the format:

```
User_Name[Sys_Name]
```

when:

- `User_Name` - user name of the Instrument, optional

- `Sys_Name` - system name of the instrument from the list "ABSENT, DEFAULT_DEMO, DEFAULT_LAN, DEFAULT_USB, DEMO2, DEMO3, UNIT1, UNIT2, UNIT3, UNIT4, UNIT5, UNIT6, UNIT7, UNIT8"

Version: This command can be used with PicoScope 9000 SW v.2.4.0 or later.
Switch to another device command with query

Header:
Instr:Current:Set? Argument

Type:
Data

Argument:
Specifier of the required instrument. May be one of three alternatives: a number of devices in the system; a user name or a system name of the instruments. Note that all space symbols (" ") in the names must be changed to the underline symbol ("_") in the commands

Forms:
command with query only

Action:
The GUI changes to the given device. If the switch is successful the command returns "OK". If the new device is already used by another interface the command returns "BUSY". If a new device is not connected to PC the command returns "NOT DETECTED"

Version:
This command can be used with PicoScope 9000 SW v.2.4.0 or later

GUI Ready query

Header:
Instr:GUIMready?

Type:
On/Off

Argument:
none

Forms:
query only

Action:
return "OFF" when the GUI is not finished loading and is not ready; and return "ON" when GUI is ready.

ATTENTION!
This command must be the first after the start of the COM object. It must be repeated until the response is "ON".

Version:
This command can be used with PicoScope 9000 SW v.2.4.1 or later.
5 Programming Examples

Your PicoScope installation includes programming examples in the following languages and development environments:

- Delphi
- LabVIEW
- Visual Basic .NET

5.1 Delphi

The program:

```
PicoScopeDelphiClientExample.dproj
```

in the Delphi_Client_Example/ subdirectory of the PicoScope9000 SDK materials demonstrates how to operate PicoScope 9000 Series PC Oscilloscopes. The file:

```
PicoScope9000_TLB.pas
```

is the description of the PicoScope9000.COMRC object. You must include this file in your own programs. Other files required for the example are:

```
MainClient.pas
MainClient.dfm
PicoScopeDelphiClientExample.dproj
PicoScopeDelphiClientExample.dsk
PicoScopeDelphiClientExample.identcache
PicoScopeDelphiClientExample.res
```

All these 8 files must be put into the same directory and compiled. This has been tested with Delphi 2009.

5.2 LabVIEW

The program:

```
PicoScope_Example.vi
Test_Get_Data.vi
```

in the LabView_Client_Example/ subdirectory of the PicoScope9000 SDK materials demonstrates how to operate PicoScope 9000 Series PC Oscilloscopes.

This files must be put into the some directory and compiled. It has been tested with LabVIEW Base Development System 8.2.1.
5.3 Visual Basic .NET

The project is located in the PicoScope9000VBdotNETClient/ subdirectory of the PicoScope9000 SDK. The subdirectory is a standard VB.NET project directory with the project file:

PicoScope9000VBdotNETClient.vbproj

solution file:

PicoScope9000VBdotNETClient.sln
MainForm.* files

and three subdirectories:

bin/
"My Project/"
obj/

Assembly obj/*/Interop.PicoScope9000.dll, which is referenced in the source code as PicoScope9000.COMRC, is a bridge between .NET platform and Windows Component Object Model (COM). It has been created with Visual Basic IDE by executing the command Project | Add Reference... | COM | PicoScope9000.

File MainForm.vb contains the whole source code of the example. Other files were created automatically either by IDE itself or by the visual form editor.

This example has been created and tested with Microsoft Visual Basic 2008 Express Edition.
Index

A
Acquisition commands
 Acquisition Mode of Channel 16
 Action when Number of Waveforms reached 16
 Channel Averaging 16
 Channel Envelopes 16
 Channel Record Length 16
 Number of Waveforms 16
 Sampling Mode 16
 Termination of Acquisition 16
 Type of signal 16
All-off mode 6

C
Case-insensitivity 4
Channels commands
 Acquire a Channel 11
 Attenuator dB 11
 Attenuator linear/log 11
 Attenuator ratio 11
 Attenuator unit 11
 Bandwidth of Channel 11
 Channels commands 11
 Display a Channel 11
 Offset a Channel 11
 Scale a Channel 11
Characteristics 6
Command classification 6
Command entry rules 4
Command header 3
Command messages 2
Commands 3
 list of 10
Common Mask Commands
 Actuate Mask Testing 45
 Format of Stored Files 45
 Load User Mask 45
 Mask Erasing 45
 Mask Test Actions 45
 Mask Test Finish Condition 45
 Number of Failed Samples 45
 Number of Failed Waveforms 45
 Number of Samples 45
 Number of Waveforms 45
 Signal for Mask Testing 45
 Stored File Name 45

D
Data-type commands 9
Delphi 59
Display commands
 Define Trace Screen (for 2YT, Comb2YTXY
Forms) 18
 Define Trace Screen (for 4YT Format) 18
 Display commands 18
 Display Format 18
 Graticule Type 18
 Persistence Time, seconds (for VarPersist
Style) 18
 Refresh Time, seconds (for VarGrayScal or
VColorGrade Styles) 18
 Reset Display Style 18
 Select active trace 18
 Set Display Style 18
 Source of X Axis for XY Screen 18
 Source of Y Axis for XY Screen 18
 Trace mode 18

E
ExecCommand Method 1
Execution-type commands 6

F
FFT commands
 Enable Spectra 39
 Spectrum Source 39
 Window 39
Float-type commands 8

G
Getting Eye Measurement Results, commands for
 Get Current Value of Parameter 52
 Get List of Measured Parameters 52
 Get Statistic Value of Parameter 52
Getting Mask Results, commands for
 Get Integrated Results of Mask Test 48
 Get Number of Samples in Margins of Selected
Polygon 48
 Get Number of Samples in Selected Polygon
with Margins Together 48
 Get Number of Samples in Selected Polygons 48
Getting Measurement Results, commands for
Getting Measurement Results, commands for
 Get Current Value of Parameter 31
 Get List of Measured Parameters 31
 Get Statistic Value of Parameter 31
Getting Results of Histogram, commands for
 Get Histogram Data 44
 Get Histogram Measurement 44
Group-off mode 6
Group-on mode 6
Group-query mode 6
GUI Ready query 56

H
Header commands
 Header 10
Headers 3

I
Integer-type commands 8

L
LabView 59
Limit Tests commands
 Action 31
 Action If 31
 Center Value 31
 Failure When 31
 File Name 31
 Format of Stored Files 31
 IF Measurement Undefined 31
 Limit Test On/Off 31
 Limit Test Termination Condition 31
 Number of Failures 31
 Number of Waveforms 31
 Parameter Activity 31
 Parameter Center Mode 31
 Parameter Delta Mode 31
 Parameter Delta Percentage for User Defined mode 31
 Parameter Delta Value for Standard Deviation mode 31
 Parameter Delta Value for User Defined Mode
 Parameter Limit Mode 31
 Upper and Lower Limits of Parameters 31
Line feeds 4
List of commands 10

M
Markers commands
 Marker Sources 23
 Marker Type 23
 Motion of Markers 23
 X position of Marker 23
 Y position of Marker 23

Mathematics commands
 Constant Value 37
 Enable Mathematical Function 37
 Function Operator 37
 Operand 1 37
 Operand 2 37
 Smoothing Parameter 37
 Trend Measurement 37

Measure commands 24
Measurement of Spectrum Signals, commands for
 Left and Right Spectrum Peaks 29
 Left and Right Spectrums Margin 29
 Limits Definition Method for Spectrum 29
 List of Spectrum Frequency Measurements 29
 List of Spectrum Magnitude Measurements 29
 Peak Level of Spectrum 29
Measurements of Time Domain Signals commands
 Base Value (for Marker Method) 24
 Delete all Measures for all Sources 24
 Execute Single Measurement 24
 List of X Inter-Signal Measurements 24
 List of X Measurements 24
 List of Y Inter-Signal Measurements 24
 List of Y Measurements 24
 Margins Definition Mode 24
 Measurement Mode 24
 Measurement Source 24
 Measurement Type 24
 Percentage of Upper, Middle or Lower Threshold 24
 Position of Left or Right Margin 24
 Position of Upper, Middle or Lower Threshold
Second Source for Inter-Signal Measurements
 Slope of Left or Right Margins 24
 Statistic Measurement Mode 24
 Threshold Definition Method 24
 Threshold Units 24
Thresholds of Left and Right Margin Slopes
 Top Value for Marker Method 24
 Top/Base Definition Method 24
 Viewing of Define Parameters 24
 Weight Value 24
Windows Value 24

Messages 2
Mnemonics 4
On/Off Group-type commands 6
On/Off-type commands 6
Overview 2

PicoScope 9000 COM Server 1
Programming Examples 59

Queries 3
Query commands 2

Selector-type commands 8
Semicolon 4
Set commands 2

Setting Eye Parameters, commands for
Eye Frame Visibility 49
Left and Right Boundary for NRZ Top/Base Finding 49
List of X-axis NRZ Measurements 49
List of X-axis RZ Measurements 49
List of Y-axis NRZ Measurements 49
List of Y-axis RZ Measurements 49
Measurement Statistics 49
Measurement Statistics Mode 49
Number of Waveforms in One Measurement 49

Source for Eye Measurements 49
Threshold Definition Mode 49
Type of Eye Measurements 49
Upper and Lower Threshold 49
Weight Value 49
Window Value 49

Setting Histogram Parameters commands
Calculation Mode 40
Histogram Axis 40
Histogram Finish Condition 40
Histogram Source 40
Histogram Visibility 40
Left and Right Window Limits for Vertical or Horizontal Histogram 40
Limit Mode for Histogram Window 40
Limit Units for Histogram Window 40
Linear Offset of Vertical or Horizontal Histogram 40
Linear Scale of Vertical or Horizontal Histogram 40
Logarithmic Offset of Vertical or Horizontal Histogram 40
Logarithmic Scale of Vertical or Horizontal Histogram 40
Number of Samples for Histogram 40
Number of Waveforms for Histogram 40
Scale Mode 40
Scale Type 40
Top and Bottom Window Limits for Vertical or Horizontal Histogram 40
Weight for Exponential Calculation 40
Window Visibility 40

Single-item mode 6
Specifications 6
Standard Mask Commands
Alignment of Signal with Standard Mask 47
Enable Margins 47
Get List of Masks 47
Get List of Standards 47
Margins Value 47
Select Standard 47
Select Standard Mask 47

System commands 56
Clear Display 10
Recall Default Setup 10
Start Autoscaling 10
Start Cycle Acquisition 10
Start Single Acquisition / Stop Acquisition 10
System commands 10

Timese commands
Acquire a Channel 13
Attenuator dB 13
Attenuator linear/log 13
Attenuator ratio 13
Attenuator unit 13
Bandwidth of Channel 13
Display a Channel 13
Offset a Channel 13
Scale a Channel 13
Timebase Commands 13

Trigger Commands
Acquire a Channel 14
Attenuator dB 14
Attenuator linear/log 14
Attenuator ratio 14
Attenuator unit 14
Bandwidth of Channel 14
Display a Channel 14
Offset a Channel 14
Scale a Channel 14
U

Utilities commands
 Autocalibration Period 53
 Start Autocalibration of Channels 53
 Start Autocalibration of Timebase 53
 Temperature Deviation 53
 When to Begin Autocalibration 53

V

Visual Basic .NET 60

W

Waveforms commands
 Get Number of Points in Waveform 55
 Get Waveform Data 55
 Get X-axis Origin 55
 Get X-axis Step 55
 Get X-axis Unit 55
 Get Y-axis Unit 55
 Spectrum Format 55
 Waveform Source 55

White space 4

Work with Disk commands
 File Name 21
 File Name Mode 21
 Format of stored files 21
 Load 21
 Save to Disk 21
 Select Memory for loading signal from disk 21
 Source for saving to file 21

Work with Memo Zones (M1, M2, M3, M4) commands
 Memory Display 20
 Save into Memory 20
 Select Memory for Saving 20
 Source for storing into Memory 20

Work with Setups commands
 Name of Custom Setup File 22
 Recall Custom Setup 22
 Recall Factory Setup 22
 Recall Power-Off Setup 22
 Save Custom Setup 22
 Save Setup as Default 22