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Abstract—The low-cost hand-held oscilloscope probe has 
changed very little in the last three or four decades. Arguably it 
has lost touch with its applications as signals have become faster, 
smaller and more prone to the invasive nature of their 
measurement.  This paper reviews the rapidly growing scale of 
the problem and proposes a more appropriate design approach 
to achieve a microwave and gigabit test probe. 
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I.  INTRODUCTION - GIGABIT DATA AND WIRELESS EVERYWHERE 

Today we are surrounded by gigabit per second data flow 
and wireless technologies in our homes, our cars, the 
workplace and on our person.  Our communications, transport, 
energy, commodities and waste infrastructure all depend on 
them.  Despite this, if we consider our ability to “see” and 
measure these signals; we are limited in our options and 
typically face high costs and skill requirements.  The location 
of even quite basic faults typically requires a well-equipped 
service center or central dealer.  The network, media system or 
security install or service technician; or street corner computer 
or phone repair shop, typically doesn’t have a multi-channel 
gigabit instrument and a pack of broadband test probes at their 
disposal.   

High-speed signals are now commonplace, but affordable 
measurement capability lags well, arguably decades, behind.  It 
seems quite likely that the lack of cost-effective measurement 
solutions might contribute to a “throw away” mentality. 

II. COULD THINGS GET ANY WORSE ? 

Unsurprisingly, the need to view, measure and analyze 
these high-speed signals really does not abate and the 
microwave and gigabit community have devised often highly 
compromised solutions of their own to meet the need. 

The key difficulty faced is that high-speed signals travel in 
matched transmission lines and any conductor (or dielectric) 
that contacts the line will create mismatch and invade or 
disturb the measurement.  Upon contact, it is quite possible that 
function of the whole system will be interrupted, in some 
industries possibly with dire consequences. Almost certainly 
there will be an unacceptable corruption of the signal that we 
are trying to measure.  Efficient debug of system malfunction 
is severely hampered if we do not have the ability to “see”, 
measure and analyze whilst the system under test operates. 

Two common microwave and gigabit measurement 
solutions in use today do not even achieve measurement during 
system function.  A third is often so invasive, or so costly that 
we often accept mere detection of presence, or capture of the 
‘general shape’ of a signal. In doing so, we may threaten 
ongoing system function in the hope of not quite interrupting it. 

A. Break into the Signal Transmission Line 

Without doubt the method having greatest measurement 
integrity is to break into the transmission line and route its 
signal to a correctly matched terminating or ‘sniffing’ 
measurement instrument.  The latter could in some 
circumstances re-inject the signal back into the system under 
test, albeit with delay, loss of amplitude or distortions. Most 
commonly however, a power meter, signal analyzer, or an 
oscilloscope will terminate the signal and downstream system 
function is lost.  

B. Separate Measurement of Individual System components 

Similar in integrity and impact to system function is the 
complete removal of a suspect system component and its 
measurement as a two or more port network or ‘black box’.   

In this case for instance a vector network analyzer will 
inject a swept sinewave to each port in turn and measure 
responses at every other port.  Perhaps more representative of 
the now most common real applications is a time domain 
reflectometer and transmission analyzer or oscilloscope. These 
will inject a fast pulse to achieve a similar result. 

Unfortunately, whilst both approaches do wholly 
characterize the behavior of our component, neither uses the 
actual signal from and to the actual port matches of the 
application.  Relating the measurement back to system 
malfunction is typically a time consuming, highly skilled and 
error prone interpretation. 

The point here is that both of the above measurement 
solutions require a break into and in most cases halting of 
signal flow.  Perhaps acceptable when high speed signals 
typically routed via a few connectorized system elements and 
when multiple parallel data streams were rare.  Today however, 
we have to accept that breaking into multiple parallel coax, 
twisted pairs and fractional millimeter PCB microstrip is at the 
very least inconvenient, if not completely impractical!  



C. The Oscilloscope or In-circuit Test Probe 

This third measurement probing solution aims to non-
invasively measure by contacting a circuit, not breaking into it. 

Unfortunately, at microwave and gigabit frequencies, 
generally this approach comprehensively fails to be non-
invasive.  It is necessary to expect the best that can be achieved 
is “low-invasive” or “moderately invasive” probing.   

At high frequency, the capacitance or, more accurately, 
probe tip impedance of these probes is comparable with or falls 
below that of the probed node or line impedance.  A significant 
mismatch is incurred upon contact; possibly not dissimilar in 
impact to shorting the signal altogether at many of its spectral 
components.  The typical nature and scale of resulting 
measurement distortions is illustrated throughout the content 
below. 

In-circuit test probes fall into two groupings, minimizing 
measurement invasion (essentially their own capacitance) in 
different ways:   

 Passive probes divide or attenuate the signal 
amplitude as close as possible to the probe tip to 
transform tip impedance to a higher value.  One 
subgroup does this for the standard input 
impedance of oscilloscopes at 1 MΩ, another sub-
group does this for oscilloscopes or any other 
measurement instrument having a 50 Ω input port. 

 Active probes amplify as close as possible to the 
probe tip to buffer the probe tip from downstream 
cable or instrument impedances. 

 An active probe may both divide and amplify to 
optimize tip impedance and dynamic range. 

However, amplification and division both incur 
compromises right behind the probe tip: 

 Signal division reduces ever smaller amplitude 
signals down towards the ever rising broadband 
noise floor.  In practice, division and impedance 
transformation ratio have to remain small. 

 Amplification introduces fragile components, 
noise, non-linearity and flatness errors and slow 
recovery from saturation characteristics. 

III. THE NATURE AND SCALE OF OSCILLOSCOPE PROBE 

SHORTCOMINGS 

A. The Traditional Passive Oscilloscope Probe 

Figs. 1 and 2 illustrate the scale of today’s low-cost probing 
problem.  This is a simulation of a high-performance but 
traditional oscilloscope probe (Divide by 10, 500 MHz 
bandwidth and 10 MΩ // 10 pF tip impedance)[1].  It is probing 
a 50 Ω transmission line carrying a pulsed-pairs waveform.  
The three pulse periods here represent common bit intervals at 
10, 5 and 1 Gb/s; oscilloscope bandwidth is 1 GHz.  A probe of 
this specification typically sells from around $200 per channel 
and it represents just about the limit of this technology. 

 
Fig. 1. 10, 5 and 1 Gb/s pulse pairs probed with a traditional 500 MHz 
oscilloscope probe. 

The red trace is that of the unprobed signal.  The blue 
shows the invasive impact of this probe, significant eye closure 
in all cases and more than enough to threaten disruption of 
system function at the higher bit rates.  The green is the 
delayed and of course wholly inadequate response from the 
probe at any of these now common data rates. 

Below is the frequency domain response of the probe and 
the probed signal. Monte Carlo simulation accounts DUT 
mismatch at both ends of the probed line.  The bandwidths of 
the probe, the oscilloscope and the loading at the probe tip 
combine to reduce measurement bandwidth below 400 MHz, 
despite a degree of peaking in the probe.  More importantly to 
ongoing system function, the loading on the line reduces 
transmitted signal bandwidth to just above 1 GHz in this case. 

 
Fig. 2. Frequency response of the standard probe and the probed line. 

B. A Typical 6 GHz Active Oscilloscope Probe 

Figs. 3, 4 and 5 show the same responses for a typical 6 GHz 
active probe. Again a divide by 10 example as these will have 
the highest tip impedance; in this case specified at 100 kΩ in 
parallel with 0.9 pF.  Oscilloscope bandwidth here is 20 GHz. 

 
Fig. 3. 10, 5 and 1 Gb/s pulse pairs probed with a 6 GHz active probe. 
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V. A CONCLUSION THAT THE LOW-IMPEDANCE PASSIVE PROBE 

SHOULD HAVE ITS DAY 

Test and measurement providers have tended to by-pass 
development of the Low Impedance Passive Probe, used by RF 
and microwave engineers for decades, as a high-integrity, low-
cost, front-line probing solution.  Already emerged wireless 
and gigabit technologies are desperately in need of the solution, 
and for it to be widely proliferated for application throughout 
product life-cycles and across user skill sets. This paper 
concludes that the humble Low Impedance Passive Probe does 
provide a credible answer. 

The design approach has initially realized interchangeable 
probe heads with bandwidths out to 9 GHz, ratios of divide by 
5, 10, and 20 at tip impedances between 220 and 910 Ω; DC, or 
AC coupled (down to 100 kHz).   These probes are suitable for 
use with any 50 Ω terminating measurement port, trigger or 
clock input. They are suited to application with oscilloscopes, 
signal analyzers, TDT and network (transmission) analyzers, 
timer-counters and millivolt meters, and without regard to 
manufacturer.  Tight tolerance and coplanar manufacture 
within a multilayer microwave PCB substrate has achieved 
high measurement integrity in the probed waveform. 

Above all, low input capacitance is always less invasive to 
the measurement and to downstream system performance.  
Moreover, with attention to dimensions at the probe tips and 
their coupling to the line, that lower probe tip capacitance 
combines with smaller coupling inductance to present a more 

resistive shunt loading. Measurement bandwidth and 
downstream impact both benefit. 

Perhaps counterintuitively, the paper demonstrates that a   
low-impedance probe tip can be less intrusive to microwave 
and gigabit measurements than an equivalent supposedly high-
impedance active probe.  Naturally the passive probe can be 
realized at very much lower cost and size than its active 
counterpart and it will outperform in terms of noise and 
stability.  The output cable is also much lighter and more 
flexible when manipulating or soldering to fine-pitch circuitry. 

Lower cost facilitates the flexibility of interchangeable 
probe heads and multipoint probing becomes a cost-effective 
option.  The inputs, the outputs, the supply decoupling of a 
device or subsystem can all be probed using a single family of 
probes. For instance, high-speed differential logic and supplies 
around an FPGA; or input, output, envelope modulation and 
bias or supplies around a power amplifier. 

Further advantages are that while there is a limit to the 
voltage (actually average power) that can be applied to a 
passive probe (5 to 14 V DC or AC pk in the first realizations) 
the approach is inherently linear (non-distorting) and does not 
suffer from saturation or slow recovery phenomena.  The 
passive probe is also inherently EMC robust, it is not fragile in 
the presence of static or high slew rate and it even offers some 
protection to a vulnerable instrument. The initial probes are 
protected and perform to peak applied voltage of between 25 
and 150 V pk. 
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