CONTENTS

1. Overview ... 1
 1.1 Introduction .. 1
 1.2 Terminals and component sites .. 2
 1.3 Connecting to the data logger ... 2

2. Taking measurements ... 3
 2.1 Voltage .. 3
 2.2 Current .. 6
 2.3 Light level .. 6
 2.4 pH ... 7
 2.5 Temperature ... 8

Appendix 1. Thermocouple conversion table ... 11
1. Overview

1.1 Introduction
The ADC-20/ADC-24 Terminal Board is designed for use with the 8-channel ADC-20 and 16-channel ADC-24 High-Resolution Data Loggers. For simple applications, you can simply connect sensor wires to the screw terminals on the terminal board, without the need for soldering. For more advanced applications, the terminal board enables you to design and build sensor circuits that condition measurements for the data loggers to process. The board has empty locations for extra components (not supplied), as described later in this manual.

![Layout of ADC-20/ADC-24 Terminal Board](image)
1.2 Terminals and component sites

The table below shows the purpose of each of the terminals and empty component sites.

<table>
<thead>
<tr>
<th>Terminal or site</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 16</td>
<td>Connections to ADC Channels 1 to 16</td>
</tr>
<tr>
<td>AG</td>
<td>Connections to analog ground*</td>
</tr>
<tr>
<td>DG</td>
<td>Connections to digital ground*</td>
</tr>
<tr>
<td>+5 V and –5 V</td>
<td>Low-current power supply (up to 2 mA) for sensors, if required</td>
</tr>
<tr>
<td>+2.5 V</td>
<td>Reference voltage</td>
</tr>
<tr>
<td>R1a to R16a</td>
<td>Sites for series resistors in voltage dividers. Referred in this document as R_A. R1a is connected to Channel 1, R2a to Channel 2 and so on. If you use one of these sites, you must cut the thin track beneath the resistor.</td>
</tr>
<tr>
<td>R1b to R16b</td>
<td>Sites for shunt resistors in voltage dividers. Referred to in this document as R_B. R1b is connected to Channel 1, R2b to Channel 2 and so on.</td>
</tr>
<tr>
<td>Q1</td>
<td>Site for LM35 temperature sensor</td>
</tr>
<tr>
<td>BNC</td>
<td>Site for upright BNC socket</td>
</tr>
<tr>
<td>IC1</td>
<td>Site for a 14-pin DIL integrated circuit. You can use wires to link pins to channels.</td>
</tr>
</tbody>
</table>

* We do not recommend that you connect AG and DG together, as this would degrade measurement accuracy.

Terminals and component sites

1.3 Connecting to the data logger

You can plug the terminal board directly into the analog connector on the ADC-20 and ADC-24 data loggers. Alternatively, you can use a standard 25-way male-D to female-D parallel cable to connect the terminal board to the data logger.
2. Taking measurements

2.1 Voltage

2.1.1 General
When using the ADC-20/ADC-24 Terminal Board with the ADC-20 or ADC-24 to measure voltages, you can connect the voltage source in one of two ways: directly, by plugging straight into the channel, or indirectly, via a voltage divider.

2.1.2 Direct connection
For voltage sources measuring from \(-2.5\) V to \(+2.5\) V, use a direct connection to any channel.

![Direct input to channel](image)

2.1.3 Voltage divider connection for single-ended measurements
For voltages beyond \(-2.5\) V to \(+2.5\) V, use a voltage divider connection.

![Single-ended voltage divider](image)
The voltage that the ADC sees, V_{ADC}, depends on V_{IN} and the values of R_A and R_B, and is given by the following equation:

$$V_{ADC} = V_{IN} \times \frac{R_B}{R_A + R_B}$$

Choose values of R_A and R_B so that V_{ADC} is approximately +2.5 V when V_{IN} is at its highest.

To minimize errors in the measured voltage, V_{ADC}, caused by loading of the source voltage V_{IN}, ensure that the combined resistance of $R_A + R_B$ is much greater than the resistance of the source voltage. If you are unsure of the resistance of the voltage source, use large values for R_A and R_B such that $R_A + R_B$ is about 10 kΩ.

If you have chosen a value for R_B that is greater than 10 kΩ, and you need high accuracy, then you will need to take into account the ADC’s input resistance R_{ADC}, which acts in parallel with R_B. Use the following equation to obtain a value for the parallel equivalent resistance of R_B and R_{ADC}, R_{BEQ}, then use R_{BEQ} instead of R_B in the previous equation:

$$R_{BEQ} = \frac{R_B \times R_{ADC}}{R_B + R_{ADC}}$$

where $R_{ADC} = 1 \text{ MΩ}$

The following four noise problems are often associated with potential divider circuits:

- Noise from source voltage. Try fitting a capacitor as described below.
- RF interference is picked up at high-impedance points. Smaller values for R_A and R_B may help.
- Noise on the earth connections.
- The signal 0 V line is connected to mains earth. Try to avoid this situation

If the first or second of these occurs, and you want to try a capacitor, ensure that you have fitted resistor R_A and cut the corresponding track beneath the resistor. Fit the capacitor in place of or in parallel with R_B, as necessary. Use the following equation for C, the value of the capacitor:

$$C = \frac{1}{2\pi f \times R}$$

where R is R_A or the smaller of R_A and R_B, and f is the highest signal frequency in hertz.
2.1.4 Voltage divider connection for differential measurements

For differential voltages beyond –2.5 V to +2.5 V, use a double voltage divider connection:

![Diagram of ADC-20/ADC-24 Terminal Board and ADC-20/ADC-24 unit with voltage divider connection]

Differential voltage divider

Place a potential divider on each half of the differential input as in the diagram above. Connect the bottoms of both dividers together and tie them to the channel and AG. Run the middle of each divider to the data logger input channel and the top of each divider to the measurement voltage.

Each half must use the same value components in order to give the same ratio and the same impedance. Even small mismatches in attenuation will affect the common mode rejection ratio, so you should use 1% (40 dB) or 0.1% (60 dB) resistors.
2.2 Current
You can use the ADC-20 or ADC-24 with terminal board to measure current. If the current returns through ground, you can use a simple shunt resistor to convert the current into a voltage before measuring with the ADC. The diagram below shows a circuit with a shunt resistor R_B.

![Shunt resistor circuit diagram]

Calculate the resistor value R_B using the following equation:

$$R_B = \frac{V_{\text{RANGE}}}{I_{\text{MAX}}}$$

where I_{MAX} is the highest current you expect to measure and V_{RANGE} is the selected input range.

WARNING
Do not use this method to measure mains (line power) current. Seek professional advice!

2.3 Light level
In order to measure light levels using the ADC-20 or ADC-24 with terminal board, you will also need a light-dependent resistor (LDR) and a fixed resistor.

Use the +5 V output to supply power to the circuit. Use a resistor of around 1 MΩ for R_A, and place the LDR in location R_B.
2.4 pH

It is possible to carry out basic pH measurements using your ADC-20 or ADC-24 with terminal board. However, as the pH of a liquid can vary widely with temperature, we recommend using the USB DrDAQ Data Logger and a temperature sensor for more accurate measurements.

The diagram below shows the connections required to measure pH with an ADC-20 or ADC-24 with terminal board. The circuit allows you to use any standard pH probe, including the DrDAQ pH sensor (part number DD011).

![pH sensor circuit diagram]

Note that the op-amp should have very high input impedance: an LT1114 would be suitable.

Following this method, you will need to calibrate the probe using two or three buffer solutions of known pH.
2.5 Temperature

You can measure temperature accurately using the ADC-20 or ADC-24 with the terminal board and a suitable sensor. There are three methods of doing so, each using one of the following sensors:

- LM35DZ integrated circuit (IC) sensor
- Precision thermistor
- Thermocouple used with AD595 IC

2.5.1 LM35DZ IC sensor

The LM35DZ IC is a combined precision temperature sensor and signal conditioner in a three-pin TO-92-style casing, and the easiest of the three temperature-sensing options to fit to the ADC-20/ADC-24 Terminal Board. The device measures temperatures in the range 0 °C to +100 °C and includes the electronics required to convert temperatures to a linear voltage of 10 mV/°C.

Fit the sensor to the terminal board in position Q1, as illustrated above. To convert the voltage to a temperature reading, use the parameter scaling facility in the PicoLog software, with scaling method set to Equation. Set the scaling equation to \(X \times 100 \). For more information, see the PicoLog User’s Guide or the onboard help file.
2.5.2 Precision thermistor

The precision thermistor works with the reference output of the data logger, connected as illustrated below. The thermistor in the diagram is an NTC (negative temperature coefficient) type, and should be fitted in position R_B. Resistor R_A is a precision metal film type, with a value of 49.9 Ω and a tolerance of 0.1%.

Temperature sensor circuit with precision thermistor

The thermistor outputs a voltage value: you will need to use the PicoLog software to convert this to a temperature, using values from the conversion table in the thermistor data sheet.
2.5.3 Thermocouple

In order to use a thermocouple to measure temperature with your ADC-20 or ADC-24 and terminal board, you will also need to use an AD595 IC from Analog Designs. The circuitry involved in connecting this to the data logging equipment is the most complex of the three temperature-measurement options, so you should take great care if you do choose this method.

The AD595 is an integrated thermocouple instrumentation amplifier with built-in cold-junction compensation. The diagram below shows how to connect a Type K thermocouple and AD595 to the terminal board.

As with the precision thermistor circuit described above, you will need to convert voltage values to temperatures. A conversion table is supplied in Appendix 1 of this document.

![Type K thermocouple circuit diagram]

Temperature sensor circuit with precision thermistor

The circuit illustrated can measure temperatures from –200 °C to +1250 °C. The component values are as follows:

- \(R_A = 44.2 \, k\Omega \) 0.1% metal film
- \(R_B = 11 \, k\Omega \) 0.1% metal film
- \(R_S = 75 \, k\Omega \) 0.1% metal film
Please note that the AD595 requires a separate power supply. For full information on this component, see the Analog Devices website, http://www.analog.com. Ensure that you observe all electrostatic discharge (ESD) precautions when constructing this circuit, to avoid damage to the AD595 IC.

Appendix 1. Thermocouple conversion table

<table>
<thead>
<tr>
<th>Temp (°C)</th>
<th>V_{ADC} (V)</th>
<th>Temp (°C)</th>
<th>V_{ADC} (V)</th>
<th>Temp (°C)</th>
<th>V_{ADC} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-200</td>
<td>0.003</td>
<td>180</td>
<td>0.587</td>
<td>660</td>
<td>1.474</td>
</tr>
<tr>
<td>-180</td>
<td>0.018</td>
<td>200</td>
<td>0.622</td>
<td>760</td>
<td>1.658</td>
</tr>
<tr>
<td>-160</td>
<td>0.036</td>
<td>220</td>
<td>0.657</td>
<td>780</td>
<td>1.695</td>
</tr>
<tr>
<td>-140</td>
<td>0.057</td>
<td>240</td>
<td>0.693</td>
<td>800</td>
<td>1.731</td>
</tr>
<tr>
<td>-120</td>
<td>0.081</td>
<td>260</td>
<td>0.729</td>
<td>820</td>
<td>1.767</td>
</tr>
<tr>
<td>-100</td>
<td>0.107</td>
<td>280</td>
<td>0.765</td>
<td>840</td>
<td>1.803</td>
</tr>
<tr>
<td>-80</td>
<td>0.135</td>
<td>300</td>
<td>0.802</td>
<td>860</td>
<td>1.838</td>
</tr>
<tr>
<td>-60</td>
<td>0.164</td>
<td>320</td>
<td>0.856</td>
<td>880</td>
<td>1.874</td>
</tr>
<tr>
<td>-40</td>
<td>0.196</td>
<td>340</td>
<td>0.875</td>
<td>900</td>
<td>1.909</td>
</tr>
<tr>
<td>-20</td>
<td>0.229</td>
<td>360</td>
<td>0.912</td>
<td>920</td>
<td>1.944</td>
</tr>
<tr>
<td>-10</td>
<td>0.246</td>
<td>380</td>
<td>0.949</td>
<td>940</td>
<td>1.979</td>
</tr>
<tr>
<td>0</td>
<td>0.263</td>
<td>400</td>
<td>0.984</td>
<td>960</td>
<td>2.014</td>
</tr>
<tr>
<td>10</td>
<td>0.281</td>
<td>420</td>
<td>1.024</td>
<td>980</td>
<td>2.049</td>
</tr>
<tr>
<td>20</td>
<td>0.298</td>
<td>440</td>
<td>1.061</td>
<td>1000</td>
<td>2.083</td>
</tr>
<tr>
<td>25</td>
<td>0.307</td>
<td>460</td>
<td>1.098</td>
<td>1020</td>
<td>2.117</td>
</tr>
<tr>
<td>30</td>
<td>0.316</td>
<td>480</td>
<td>1.136</td>
<td>1040</td>
<td>2.151</td>
</tr>
<tr>
<td>40</td>
<td>0.334</td>
<td>500</td>
<td>1.173</td>
<td>1060</td>
<td>2.185</td>
</tr>
<tr>
<td>50</td>
<td>0.352</td>
<td>520</td>
<td>1.211</td>
<td>1080</td>
<td>2.221</td>
</tr>
<tr>
<td>60</td>
<td>0.371</td>
<td>540</td>
<td>1.249</td>
<td>1100</td>
<td>2.253</td>
</tr>
<tr>
<td>80</td>
<td>0.407</td>
<td>560</td>
<td>1.286</td>
<td>1120</td>
<td>2.286</td>
</tr>
<tr>
<td>100</td>
<td>0.444</td>
<td>580</td>
<td>1.324</td>
<td>1140</td>
<td>2.319</td>
</tr>
<tr>
<td>120</td>
<td>0.480</td>
<td>600</td>
<td>1.361</td>
<td>1160</td>
<td>2.352</td>
</tr>
<tr>
<td>140</td>
<td>0.516</td>
<td>620</td>
<td>1.399</td>
<td>1180</td>
<td>2.384</td>
</tr>
<tr>
<td>160</td>
<td>0.552</td>
<td>640</td>
<td>1.436</td>
<td>1200</td>
<td>2.417</td>
</tr>
</tbody>
</table>