PicoScope® 6
PC-oscilloscoopsoftware

Gebruikershandleiding
Inhoudsopgave

1 Welkom ... 1

2 PicoScope 6 overzicht ... 2

3 Inleiding .. 3
 1 Wettelijke verklaring ... 3
 2 Upgrades ... 4
 3 Handelsmerken ... 4
 4 Deze handleiding gebruiken ... 4
 5 Systeemvereisten .. 5

4 PicoScope voor de eerste keer gebruiken ... 6

5 PicoScope en oscilloscoopbeginselen ... 7
 1 Basiskennis oscilloscoop .. 7
 2 Basiskennis PC-oscilloscoop ... 8
 3 Basiskennis PicoScope ... 8
 1 Vastleggingsmodi ... 9
 2 Hoe werken vastleggingsmodi met gezichtspunten? ... 10
 4 PicoScope-venster ... 11
 5 Scoopgezichtspunt ... 12
 6 MSO-gezichtspunt .. 13
 1 Digitale weergave .. 14
 2 Digitaal contextmenu ... 15
 7 XY-gezichtspunt .. 16
 8 Activeringsmarker ... 17
 9 Post-activering pijl .. 18
 10 Spectrumgezichtspunt ... 19
 11 Persistentiemodus .. 20
 12 Tabel met metingen .. 21
 13 Knopinfo aanwijzer ... 22
 14 Signaallinialen .. 23
 15 Tijdlinialen .. 24
 16 Faselinialen .. 25
 17 Liniaalinstellingen .. 27
 18 Liniaallegenda .. 28
 19 Frequentielegenda .. 28
 20 Eigenschappenvenster ... 29
 21 Aangepaste probes ... 30
 22 Rekenkanalen .. 31
 23 Referentiegolfvormen .. 32
 24 Seriële decodering ... 33
 25 Maskerlimiettesten ... 34
 26 Alarmen .. 35
 27 Buffernavigatie ... 36
Inhoudsopgave

6 Menu’s .. 37
 1 Menu Bestand ... 38
 1 Dialoogvenster Opslaan als ... 39
 2 Menu opstartinstellingen ... 46
 2 Menu Bewerken ... 47
 1 Aantekeningen ... 48
 2 Dialoogvenster voertuiggegevens (alleen PicoScope automobiel) 48
 3 Menu Gezichtspunten .. 49
 1 Dialoogvenster aangepast raster ... 51
 4 Menu Metingen ... 52
 1 Dialoogvenster Meting toevoegen/bewerken .. 53
 2 Geavanceerde instellingen metingen ... 54
 5 Menu Gereedschap .. 56
 1 Dialoogvenster aangepaste probes ... 57
 2 Dialoogvenster Rekenkanalen ... 72
 3 Dialoogvenster Referentiegolfvormen ... 82
 4 Dialoogvenster Seriële decodering ... 84
 5 Dialoogvenster Alarmen .. 85
 6 Menu Maskers ... 87
 7 Macrorecorder .. 91
 8 Dialoogvenster Voorkeuren ... 92
 6 Menu Help ... 105
 1 Dialoogvenster Signaalgenerator (PicoScope-apparaten) .. 106
 2 Dialoogvenster voor persistentie-opties .. 107
 3 Bestanden converteren in Windows Explorer ... 108
 7 Werk balken en knoppen ... 110
 1 Werkbalk Kanalen .. 110
 1 Menu Kanaalopties ... 111
 2 Knop digitale ingangen ... 118
 2 Kanalen-werkbalk PicoLog 1000 serie .. 120
 1 Instelling digitale uitgangen PicoLog 1000 serie .. 121
 3 Werkbalk USB DrDAQ kanalen .. 122
 1 USB DrDAQ RGB LED-instelling .. 123
 2 USB DrDAQ Digitale uitgangen-instelling .. 124
 4 Werkbalk voor instelling van vastlegging ... 125
 1 Dialoogvenster Spectrumopties ... 127
 2 Dialoogvenster voor persistentie-opties ... 129
 5 Navigatiewerkbalk buffer .. 131
 6 Werkbalk Metingen .. 132
 7 Knop Signaalgenerator ... 133
 1 Dialoogvenster Signaalgenerator (PicoScope-apparaten) 133
 2 Dialoogvenster signaalgenerator (USB DrDAQ) .. 137
 3 Willekeurige golfvormbestanden ... 138
4 Venster Generator voor willekeurige golvenormen ... 139
5 Menu demo-signalen .. 143
6 Dialoogvenster demo-signalen ... 144
8 Werkbalk Stop/start .. 145
9 Werkbalk activering ... 146
 1 Dialoogvenster geavanceerde activering ... 148
 2 Types geavanceerde activering .. 149
10 Werkbalk voor zoomen en bladeren .. 155
 1 Zoomoverzicht ... 156
8 Hoe... ... 157
 1 Omschakelen naar een ander apparaat .. 157
 2 Linialen gebruiken om een signaal te meten ... 158
 3 Een tijdsverschil meten ... 159
 4 Een gezichtspunt verplaatsen ... 160
 5 De schaalverdeling en offset van een signaal instellen .. 161
 6 Het spectrumgezichtspunt instellen .. 163
 7 Een fout vinden met persistentiemodus ... 164
 8 Maskerlimiettesten instellen ... 168
 9 Opslaan bij activering .. 171
9 Referentie .. 175
 1 Types metingen ... 175
 1 Scoopmetingen ... 176
 2 Spectrummetingen ... 177
 2 Types golvenormen signaalgenerator .. 179
 3 Spectrumvensterfuncties .. 180
 4 Activeringstiming (deel 1) ... 181
 5 Activeringstiming (deel 2) ... 182
 6 Tabel met apparaateigenschappen ... 183
 7 Opdrachtregelsyntaxis .. 184
 8 Flexibele voeding .. 186
 9 Woordenlijst .. 188

Index ... 191
Welkom bij **PicoScope 6**, de PC-oscilloscoophandleiding van Pico Technology.

Met een oscilloscoop van Pico Technology, maakt PicoScope van uw PC een krachtige **PC-oscilloscoop** met alle functies en prestaties van een benchtop-oscilloscoop met een fractie van de kosten.

- **Het gebruik van deze handleiding**
- **Wat is er nieuw in deze versie?**
- **PicoScope voor de eerste keer gebruiken**

Softwareversie: PicoScope R6.11.7 ([Versieopmerkingen](#))
2 PicoScope 6 overzicht

PicoScope 6 is de software van Pico Technology voor PC-oscilloscopen.

Hogere prestaties
- Snellere vastlegging, waardoor het makkelijker wordt om snel bewegende signalen te zien
- Snellere gegevensverwerking
- Betere ondersteuning voor de meest recente PicoScope USB-oscilloscopen

Verbeterd gebruiksgemak en uiterlijk
- Duidelijker afbeeldingen en tekst
- Tips en help-berichten bij alle functies
- Eenvoudige hulpmiddelen voor verplaatsen en zoomen

Nieuwe functies

<table>
<thead>
<tr>
<th>Microsoft .net</th>
<th>De nieuwste Windows .NET-technologie om sneller updates af te leveren</th>
<th>Meerdere gezichtspunten van dezelfde gegevens, met individuele zoominstellingen voor elk gezichtspunt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aangepaste probes</td>
<td>Beheer van Aangepaste probes om het voor u gemakkelijk te maken uw eigen probes en sensoren te gebruiken met PicoScope</td>
<td>Geavanceerde activeringscondities met inbegrip van puls, venster en logica</td>
</tr>
<tr>
<td>Eigenschappenvenster</td>
<td>Eigenschappenvenster om alle instellingen in één oogopslag te bekijken</td>
<td>Spectrummodus met een volledig geoptimaliseerde spectranalyser</td>
</tr>
<tr>
<td>1 Hz</td>
<td>Filteren van lage doorvoer per kanaal ***</td>
<td>Rekenkanalen om wiskundige functies te maken voor ingangskanalen</td>
</tr>
<tr>
<td>Referentiegolfvormen</td>
<td>Referentiegolfvormen om kopieën van ingangskanalen op te slaan</td>
<td>Ontwerpen van willekeurige golfvormen voor oscilloscopen met een ingebouwde willekeurige golfvormgenerator</td>
</tr>
<tr>
<td>Snelle activeringsmodus</td>
<td>Snelle activeringsmodus om een sequentie golfvormen vast te leggen met de minimum mogelijke dode tijd</td>
<td>Integratie in Windows Explorer om bestanden als foto's weer te geven en te converteren naar andere indelingen</td>
</tr>
<tr>
<td>Opdrachtregeleopties</td>
<td>Opdrachtregeleopties voor het converteren van bestanden</td>
<td>Zoomoverzicht voor het snel aanpassen van de zoom om een specifiek deel van de golfvorm te tonen</td>
</tr>
<tr>
<td>Seriële decodering</td>
<td>Seriële decodering voor RS232, I²C en andere indelingen, in real-time</td>
<td>Maskerlimiettests om aan te geven wanneer een signaal buiten bereik gaat</td>
</tr>
<tr>
<td>Buffernavigator</td>
<td>Buffernavigator om de golfvormbuffer te doorzoeken</td>
<td>Alarman om u te waarschuwen wanneer een opgegeven gebeurtenis plaatsvindt</td>
</tr>
</tbody>
</table>
3 Inleiding

PicoScope 6 is een uitgebreide softwaretoepassing voor oscilloscopen van Pico Technology. In combinatie met hardware van PicoScope creëert deze software een oscilloscoop en spectrumanalyser op uw PC.

PicoScope 6 ondersteunt de apparaten die worden weergegeven in de tabel met **Apparaateigenschappen**. Het werkt op elke computer met Windows XP SP3 tot Windows 8. (Zie **Systeemvereisten** voor verdere aanbevelingen.)

PicoScope 6 gebruiken

- Aan de slag: zie **PicoScope voor de eerste keer gebruiken** en de **Functies** van PicoScope.
- Voor meer informatie: zie beschrijvingen van **Menu's** en **Werkbalken** en het **Referentie** gedeelte.
- Zie voor stapsgewijze zelfstudies, het gedeelte "**Hoe**".

3.1 Wettelijke verklaring

Licentieverlening. Het materiaal in deze uitgave wordt in licentie gegeven, niet verkocht. Pico Technology Limited ('Pico') verleent een licentie aan de persoon die deze software installeert, onderworpen aan de hieronder vermelde voorwaarden.

Toegang. De Licentiehouder stemt in om alleen toegang te verlenen tot deze software aan personen die kennis hebben genomen van en akkoord gaan met deze voorwaarden.

Gebruik. De software in deze release is uitsluitend voor gebruik met Pico-producten of met gegevens die zijn verzameld met behulp van Pico-producten.

Copyright. Pico eist het auteursrecht op en behoudt de rechten voor op alle materiaal (software, documenten, enz.) die zijn opgenomen in deze release.

Aansprakelijkheid. Pico en diens agenten zijn niet aansprakelijk voor enig verlies of schade, ongeacht de oorzaak, gerelateerd aan het gebruik van apparatuur of software van Pico Technology, tenzij dit bij wet is uitgesloten.

Geschiktheid voor doel. Geen twee toepassingen zijn hetzelfde. Pico kan daarom niet garanderen dat de apparatuur of software geschikt voor een bepaalde toepassing. Daarom is het verantwoordelijkheid van de gebruiker om ervoor te zorgen dat het product geschikt voor de toepassing van de gebruiker.

Bedrijfskritieke toepassingen. Aangezien de software wordt uitgevoerd op een computer waarop mogelijk ook andere softwareproducten lopen, kan de software worden gestoord door deze andere producten. Deze licentie sluit daarom specifiek het gebruik uit in bedrijfskritieke toepassingen, bijvoorbeeld levensondersteuningssystemen.

Virussen. Deze software werd voortdurend gecontroleerd op virussen tijdens de productie. De gebruiker is echter verantwoordelijk voor viruscontrole van de software na de installatie ervan.

Ondersteuning. Geen enkele software is ooit volledig vrij van fouten. Als u niet tevreden bent met de prestaties van deze software, dient u contact op te nemen met onze medewerkers voor productondersteuning.
3.2 Upgrades
We bieden gratis upgrades aan op onze website op www.picotech.com. Wij behouden ons het recht voor om een vergoeding te vragen voor updates of vervangonderdelen verstuurd op fysieke media.

3.3 Handelsmerken
Windows is een geregistreerd handelsmerk van Microsoft Corporation. Pico Technology, PicoScope en PicoLog zijn internationaal gedeponeerde handelsmerken.

3.4 Deze handleiding gebruiken
Als u een PDF-viewer gebruikt om deze handleiding te lezen, kunt u de pagina's van de handleiding omdraaien als bij een boek, met behulp van de knoppen Terug en Verder in uw viewer. Deze knoppen zien er ongeveer als volgt uit:

Terug

Verder

U kunt ook de volledige handleiding afdrukken vanaf uw computer. Zoek naar een knop voor Afdrukken zoals deze:

Afdrukken

Voor uw eerste kennismaking met PicoScope, stellen wij voor dat u met deze onderwerpen begint:

- PicoScope voor de eerste keer gebruiken
- Basiskennis oscilloscoop
- Basiskennis PC-oscilloscoop
- Basiskennis PicoScope
3.5 Systeemvereisten

Om ervoor te zorgen dat PicoScope naar behoren werkt, moet u een computer hebben met tenminste de minimale systeemvereisten voor het uitvoeren van uw Windows-besturingssysteem. Dit moet één van de versies zijn die in de onderstaande tabel worden vermeld. De oscilloscoop zal beter presteren met een meer krachtige PC en zal baat hebben bij een multicore-processor.

<table>
<thead>
<tr>
<th>Item</th>
<th>Minimale specificaties</th>
<th>Aanbevolen specificaties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Besturingssysteem</td>
<td>Windows XP SP3, Windows Vista, Windows 7 of Windows 8 32-bits of 64-bits editie</td>
<td>Niet Windows RT</td>
</tr>
<tr>
<td>Processor</td>
<td>300 MHz</td>
<td>1 GHz</td>
</tr>
<tr>
<td>Geheugen</td>
<td>256 MB</td>
<td>512 MB</td>
</tr>
<tr>
<td>Vrije schijfruimte*</td>
<td>1 GB</td>
<td>2 GB</td>
</tr>
<tr>
<td>Poorten</td>
<td>USB 2.0-poort</td>
<td>USB 2.0-poort</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(USB 2.0-oscilloscopen)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USB 3.0-poort</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(USB 3.0-oscilloscopen)</td>
</tr>
</tbody>
</table>

* De PicoScope-software gebruikt niet alle schijfruimte vermeld in de tabel. De vrije ruimte is vereist om Windows efficiënt te kunnen uitvoeren.
PicoScope voor de eerste keer gebruiken

Wij hebben PicoScope zo gebruiksvriendelijk mogelijk gemaakt, zelfs voor onervaren gebruikers van oscilloscopen. Na de onderstaande inleidende stappen zult u spoedig een PicoScope-deskundige worden.

1. Installeer de software. Laad de CD-ROM meegeleverd met uw oscilloscoop, kli op de link 'Software installeren' en volg de aanwijzingen op het scherm.

5. Sluit een signaal aan op één van de ingangskanalen van het apparaat en bekijk uw eerste golfvorm! Lees de PicoScope-beginselen voor meer informatie over het gebruik van PicoScope.

Problemen?

Hulp is onderweg! Onze medewerkers voor productondersteuning staan tijdens de kantooruren altijd klaar om met u te praten (zie onze Contactgegevens). Op andere momenten kunt u een bericht achterlaten op ons ondersteuningsforum of ons een e-mail verzenden.
5 PicoScope en oscilloscoobeginselen

In dit hoofdstuk worden de fundamentele concepten uiteengezet die u moet kennen voordat u begint te werken met de PicoScope-software. Als u al eerder een oscilloscoop hebt gebruikt, dan zullen de meeste van deze ideeën u bekend voorkomen. In dit geval kunt u het hoofdstuk Basiskennis oscilloscoop overslaan en rechtstreeks naar de PicoScope-specifieke informatie gaan. Als u een nieuwe gebruiker van oscilloscopen bent, neem dan een aantal minuten de tijd om de hoofdstukken Basiskennis oscilloscoop en Basiskennis PicoScope te lezen.

5.1 Basiskennis oscilloscoop

Een oscilloscoop is een meetinstrument dat een grafiek van spanning ten opzichte van de tijd weergeeft. De onderstaande afbeelding toont bijvoorbeeld een typisch weergave op een oscilloscoopscherm als een variërende spanning verbonden is met een van de ingangskanalen.

Oscilloscoopschermen worden altijd van links naar rechts gelezen. De spanning-tijd-eigenschap van het signaal wordt getekend als een lijn die we de trace noemen. In dit voorbeeld is de trace blauw en begint bij punt A. Als u links van dit punt kijkt, ziet u het nummer "0,0" op de spanning-as, die u vertelt dat de spanning 0 is. 0 V (volt). Als u onder A kijkt, ziet u nog een nummer "0,0" op de tijd-as, die u vertelt dat de tijd op dit punt 0,0 ms (milliseconden) is.

Op punt B, 0,25 milliseconden later, is de spanning gestegen tot een positieve piek van 0,8 Volt. Op punt C, 0,75 milliseconden na het begin, is de spanning gedaald tot een negatieve piek van -0,8 Volt. Na 1 milliseconde is de spanning terug gestegen naar 0,0 volt en begint een nieuwe cyclus. Dit soort signaal heet een sinusvormig en behoort tot een onbeperkt aantal signaaltypen die u zult tegenkomen.

Met de meeste oscilloscopen kunt u de verticale en horizontale schaalverdeling van het scherm aanpassen. De verticale schaal geeft het spanningsbereik aan (in dit voorbeeld, hoewel ook schaalverdelingen in andere eenheden mogelijk zijn, zoals milliampère). De horizontale schaal geeft de tijdbasis aan en wordt gemeten in eenheden van tijd - in dit voorbeeld, duizendsten van een seconde.
5.2 Basiskennis PC-oscilloscoop

Een **PC-oscilloscoop** is een meetinstrument dat bestaat uit een hardwareapparaat en een oscilloscoop-programma op een PC. Oscilloscopen waren oorspronkelijk zelfstandige instrumenten zonder capaciteit voor signaalverwerking of meting. Opslag was alleen beschikbaar met hoge extra kosten. Later begonnen oscilloscopen gebruik te maken van nieuwe digitale technologie om meer functies te introduceren, maar het bleven zeer gespecialiseerde en dure instrumenten. **PC-oscilloscopen** zijn de laatste stap in de evolutie van oscilloscopen en combineren de meetkracht van de oscilloscoop van Pico Technology met het gemak van de PC die al op uw bureau staat.

= PC + scoop-apparaat = PC-oscilloscoop

5.3 Basiskennis PicoScope

Opmerking: er kunnen andere knoppen worden weergegeven in het hoofdvenster van PicoScope, afhankelijk van de mogelijkheden van de aangesloten oscilloscoop en de instellingen van het PicoScope-programma.
5.3.1 Vastleggingsmodi

PicoScope kan werken in drie vastleggingsmodi: **scoopmodus**, **spectrummodus** en **persistentiemodus**. De modus wordt geselecteerd door de knoppen in de werkbalk **Instellingen vastlegging**.

Capture mode buttons

- **In scoopmodus** toont PicoScope een scoop-gezichtspunt, optimaliseert de instellingen voor gebruik als een PC-oscilloscoop en staat u toe om direct de opnametijd in te stellen. U kunt nog een of meer secundaire spectrumgezichtspunten weergeven.

- **In spectrummodus** toont PicoScope een spectrumgezichtspunt, optimaliseert de instellingen voor spectrumanalyse en laat u toe om rechtstreeks het frequentiebereik in te stellen zoals op een specifieke spectrumanalyser. U kunt nog een of meer secundaire scoopgezichtspunten weergeven.

- **In persistentiemodus** toont PicoScope een enkel, gewijzigd scoopgezichtspunt waarin de oude golfvormen op het scherm blijven in vage kleuren terwijl nieuwe golfvormen worden getekend in heldere kleuren. Zie ook: *Een fout vinden met behulp van persistentiemodus* en het dialoogvenster **Persistentie-opties**.

Als u **golfvormen en instellingen opslaat**, slaat PicoScope alleen gegevens op voor de modus die op dat moment in gebruik is. Als u de instellingen voor beide modi wilt opslaan, moet u overschakelen naar de andere modus en uw instellingen opnieuw opslaan.

Zie ook: **Hoe werken vastleggingsmodi met gezichtspunten?**
5.3.2 Hoe werken vastleggingsmodi met gezichtspunten?

De **vastleggingsmodus** vertelt PicoScope of u geïnteresseerd bent in het bekijken van golfvormen (**scoopmodus**) of frequentie (**spectrummodus**). Als u een vastleggingsmodus selecteert, stelt PicoScope de hardware correct in en geeft u een **gezichtspunt** dat overeenkomt met de vastleggingsmodus (een scoopgezichtspunt als u scoopmodus of **persistentiemodus** hebt geselecteerd of een spectrumgezichtspunt als u spectrummodus hebt geselecteerd). De rest van dit hoofdstuk is niet van toepassing op de persistentiemodus, waarbij slechts één gezichtspunt is toegelaten.

Zodra PicoScope u het eerste gezichtspunt heeft getoond, kunt u, indien gewenst, meer scoop- of spectrumgezichtspunten toevoegen, ongeacht de vastleggingsmodus waarin u zich bevindt. U kunt zoveel extra gezichtspunten toevoegen en verwijderen als u wenst, zolang één gezichtspunt overeenkomt met de vastleggingsmodus.

Als u een secundair type gezichtspunt gebruikt (een spectrum-gezichtspunt in scoopmodus, of een scoopgezichtspunt in spectrummodus) dan ziet u de gegevens mogelijk horizontaal samengevouwen in plaats van netjes weergegeven zoals in een primair gezichtspunt. U kunt dit meestal vermijden door gebruik te maken van de zoomgereedschappen.
5.4 PicoScope-venster

De gezichtspunten in het PicoScope-venster rangschikken

Klik voor meer opties met de rechtermuisknop op een gezichtspunt om het menu Gezichtspunt te openen of Gezichtspunt te selecteren in de Menubalk. Selecteer vervolgens een van de menuopties om de gezichtspunten te rangschikken.
5.5 Scoopgezichtspunt

Een **scoopgezichtspunt** toont de gegevens vastgelegd van de oscilloscoop als een grafiek van signaalamplitude ten opzichte van tijd. (Zie *Basiskennis oscilloscoop* voor meer informatie over deze concepten.) PicoScope opent met een enkel gezichtspunt, maar u kunt meer gezichtspunten toevoegen met behulp van het menu *gezichtspunten*. Een scoopgezichtspunt is vergelijkbaar met het scherm van een conventionele oscilloscoop en toont u één of meer golfformen met een gemeenschappelijk horizontale tijds. Op één of meer verticale assen wordt het signaalniveau getoond. Elk gezichtspunt kan zoveel golfformen hebben als de oscilloscoop kanalen heeft. Klik op één van de labels hieronder voor meer informatie over een functie.

Scoopgezichtspunten zijn beschikbaar ongeacht de actieve modus - **scoopmodus** of **spectrummodus**.
5.6 MSO-gezichtspunt

Toepasbaarheid: alleen mixed-signal oscilloscopen (MSO)

Het MSO-gezichtspunt toont gemengde analoge en digitale gegevens op dezelfde tijdbasis.

Knop digitale ingangen: Schakelt *digitaal gezichtspunt* in- en uit en opent het dialoogvenster *Digitale instellingen*.

Analoog gezichtspunt: Toont de analoge kanalen. Hetzelfde als een standaard *scoopgezichtspunt*.

Digitaal gezichtspunt: Toont de digitale kanalen en groepen. Zie *digitaal gezichtspunt*.

Splitter: Sleep deze omhoog of omlaag om de scheiding tussen analoge en digitale secties te verplaatsen.
5.6.1 Digitale weergave

Locatie: **MSO-gezichtspunt**

Opmerking 1: u kunt met de rechtermuisknop klikken op de *digitale weergave* om het [digitale contextmenu](#) te openen.

Opmerking 2: als de *digitale weergave* niet zichtbaar is als dit vereist is, controleer dan (a) dat de knop [Digitale Ingangen](#) geactiveerd is en (b) dat er tenminste één digitaal kanaal geselecteerd is voor weergave in het dialoogvenster [Digitale instellingen](#).

Digitaal kanaal: weergegeven in de volgorde waarin ze verschijnen in het dialoogvenster [Digitale instellingen](#), waar ze kunnen worden hernoemd.

Digitale groep: Groepen worden gemaakt en benoemd in het dialoogvenster [Digitale instellingen](#). U kunt ze uitvouwen en samenvouwen in de *digitale weergave* met behulp van de knoppen [] en [].
5.6.2 Digitaal contextmenu
Locatie: klik met de rechtermuisknop op de **digitale weergave**

Deelweergave:
- **Analoog:** toon of verberg het analoge scoopgezichtspunt.
- **Digitaal:** toon of verberg het digitale scoopgezichtspunt.
 Ook beschikbaar in het menu **Gezichtspunten**.

Opmaak:
de numerieke indeling waarin de groep waarden wordt weergegeven in het **digitale scoopgezichtspunt**.

Groepen tekenen:
- **Op waarden:** teken groepen met overgangen alleen waar de waarde wijzigt:

 ![G1 tekening](image)

 Op tijd: teken groepen met overgangen die gelijk verdeeld zijn in de tijd, een keer per bemonsteringsperiode. Meestal moet u inzoomen om de individuele overgangen te zien:

 ![G1 tekening](image)

 Op niveau: teken groepen als analoge niveaus afgeleid uit de digitale gegevens:

 ![G1 tekening](image)
5.7 **XY-gezichtspunt**

Een **XY-gezichtspunt** toont in zijn eenvoudigste vorm een grafiek van één kanaal uitgezet tegen een ander kanaal. XY-modus is handig voor het weergeven van faseverhoudingen tussen periodieke signalen (met behulp van Lissajousfiguren) en voor het plotten van I-V-kenmerken (stroom-spanning) van elektronische componenten.

![Diagram van XY-gezichtspunt](image)

In het bovenstaande voorbeeld werden twee verschillende periodieke signalen gevoerd in de twee ingangskanalen. De gladde kromming van de trace vertelt ons dat de ingangen ongeveer of exact sinusgolven zijn. De drie lussen in de trace tonen dat kanaal B ongeveer drie keer de frequentie van kanaal A heeft. We kunnen zien dat de verhouding niet exact drie is omdat de trace langzaam roteert (dit is niet zichtbaar in deze statische afbeelding). Aangezien een XY-gezichtspunt geen tijd-as heeft, zegt het ons niets over de absolute frequenties van de signalen. Om de frequentie te meten, moeten we een **Scoopgezichtspunt** openen.

Hoe maakt u een XY-gezichtspunt?

Er zijn twee manieren om een XY-gezichtspunt te maken.

5.8 Activeringsmarker

De **activeringsmarker** toont het niveau en de tijd van het activeringspunt.

De hoogte van de markering op de verticale as toont het niveau waarop de activering is ingesteld en de positie op de tijdas toont de tijd van de activering.

U kunt de activeringsmarker verplaatsen door deze te verslepen met de muis. Voor een meer nauwkeurige besturing kunt u de marker ook verplaatsen met behulp van de knoppen op de werkbalk **Activering**.

Andere vormen van activeringsmarker

Als het scoopgezichtspunt ingezoomd en verplaatst is zodat het activeringspunt buiten het scherm ligt, dan verschijnt de buiten-bereik indicator voor de activeringsmarker (hierboven afgebeeld) aan de zijde van het raster om het activeringsniveau aan te geven.

In de post-activering vertragingssmodus, wordt de activeringsmarker tijdelijk vervangen door de **post-activering pijl** terwijl u de post-activering vertraging aanpast.

Als sommige **geavanceerde types activeringen** in gebruik zijn, verandert de activeringsmarker in een venstermarker, waarin de bovenste en onderste activeringsdrempels worden getoond.

Zie voor meer informatie het hoofdstuk over **Activeringstiming**.
5.9 Post-activering pijl

De **post-activering pijl** is een aangepaste vorm van de activeringsmarker die tijdelijk verschijnt op een scoopgezichtspunt terwijl u een post-activering vertraging instelt of de activeringsmarker versleept na het instellen van een post-activering vertraging. *(Wat is een post-activering vertraging?)*

![Diagram](image)

De linkerzijde van de pijl duidt het activeringspunt aan en is uitgelijnd met nul op de tijd-as. Als de nul op de tijd-as buiten het scoopgezichtspunt ligt, dan verschijnt de linkerzijde van de post-activering pijl als volgt:

![Diagram](image)

De linkerzijde van de pijl (als tijdelijke vervanging van de activeringsmarker) geeft het referentiepunt aan voor activering.

Gebruik de knoppen op de werkbalk **Activering** om een post-activering vertraging in te stellen.
5.10 Spectrumgezichtspunt

Een **spectrumgezichtspunt** is een weergave van de gegevens van een oscilloscoop. Een spectrum is een diagram van signaalniveau op een verticale as uitgezet tegen de frequentie op de horizontale as. PicoScope opent met een scoopgezichtspunt, maar u kunt een spectrumgezichtspunt toevoegen met behulp van het menu Gezichtspunten. Net als op het scherm van een conventionele spectrumanalyser, geeft een spectrumgezichtspunt u één of meer spectra met een gemeenschappelijk frequentie-as. Elk gezichtspunt kan zoveel spectra hebben als de oscilloscoop kanalen heeft. Klik op één van de labels hieronder voor meer informatie over een functie.

In tegenstelling tot het scoopgezichtspunt, worden in het spectrumgezichtspunt de gegevens niet afgekapt bij de grenzen van het bereik op de verticale as. Zo kunt u asschaalverdeling of offset toepassen om meer gegevens te bekijken. Er worden geen verticale aslabels verstrekt voor gegevens buiten het 'nuttige' bereik, maar linialen blijven wel werken buiten dit bereik.

Spectrumgezichtspunten zijn beschikbaar ongeacht de actieve modus - **scoopmodus** of **spectrummodus**.

Voor meer informatie, zie: **Het spectrumgezichtspunt instellen** en dialoogvenster **Spectrum-opties**.
5.11 Persistentiemodus

Persistentiemodus superponeert meerdere golfvormen op dezelfde weergave. Meer frequentgegevens of nieuwe golfvormen worden hierbij in meer heldere kleuren getekend dan oude golfvormen. Dit is handig voor het detecteren van fouten, als u een zeldzame foutgebeurtenis moet zien die verborgen ligt in een reeks herhaalde normale gebeurtenissen.

Schakel de persistentiemodus in door te klikken op de knop **Persistentiemodus** op de werkbalk **Vastleggingsinstellingen**. Met de **persistentie-opties** ingesteld op hun standaardwaarden zal het scherm er als volgt uit zien:

![Persistentiemodus](image)

De kleuren geven de frequentie van de gegevens aan. Rood wordt gebruikt voor de hoogste-frequentiegegevens, geel voor tussenliggende frequenties en blauw voor de minst voorkomende gegevens. In het bovenstaande voorbeeld besteedt de golfvorm het merendeel van de tijd in het rode gebied, maar door ruis dwaalt de golfvorm af en toe af naar de blauwe en gele regio’s. Dit zijn de standaardkleuren, maar u kunt deze wijzigen met behulp van het dialoogvenster **Persistentie-opties**.

Dit voorbeeld toont de meest elementaire vorm van de persistentiemodus. Zie het dialoogvenster **persistentie-opties** voor manieren om de weergave aan te passen aan uw toepassing, en **Een fout vinden met behulp van de persistentiemodus** voor een uitgewerkt voorbeeld.
5.12 Tabel met metingen

Een Tabel met metingen toont de resultaten van automatische metingen. Elk gezichtspunt kan zijn eigen tabel hebben en u kunt metingen toevoegen, verwijderen of bewerken in deze tabel.

Kolommen metingen-tabel

<table>
<thead>
<tr>
<th>Naam</th>
<th>De naam van de meting die u hebt geselecteerd in het dialoogvenster Meting toevoegen of Meting bewerken. Een “F” achter de naam geeft aan dat de statistieken voor deze meting gefilterd zijn.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bereik</td>
<td>Het gedeelte van de golfvorm of het spectrum dat u wilt meten. Standaard is dit ingesteld als de volledige trace.</td>
</tr>
<tr>
<td>Waarde</td>
<td>De live waarde van de meting, van de laatste vastlegging.</td>
</tr>
<tr>
<td>Min</td>
<td>De minimumwaarde van de meting sinds het begin van de meting.</td>
</tr>
<tr>
<td>Max</td>
<td>De maximumwaarde van de meting sinds het begin van de meting.</td>
</tr>
<tr>
<td>Gemiddelde waarde</td>
<td>Het rekenkundige gemiddelde van de meetwaarden van de laatste n vastleggingen, waarbij n wordt ingesteld op de pagina Algemeen van het dialoogvenster Voorkeuren.</td>
</tr>
<tr>
<td>σ</td>
<td>De standaardafwijking van de metingen van de laatste n vastleggingen, waarbij n wordt ingesteld op de pagina Algemeen van het dialoogvenster Voorkeuren.</td>
</tr>
<tr>
<td>Aantal bemonsteringen</td>
<td>Het aantal opnamen gebruikt voor het maken van de bovenstaande statistieken. Dit begint bij 0 wanneer activering is ingeschakeld, en telt tot het aantal vastleggingen opgegeven op de pagina Algemeen van het dialoogvenster Voorkeuren.</td>
</tr>
</tbody>
</table>

Metingen toevoegen, bewerken of wissen

Zie: Werkbalk metingen.

De breedte van een kolom wijzigen

Zorg er eerst voor dat de optie Automatische kolombreedte niet is ingeschakeld in het menu Metingen. Klik indien nodig op de optie om deze uit te schakelen. Versleep vervolgens de verticale scheidingslijn tussen de kolomkoppen om het formaat van de kolommen te veranderen, zoals op de tekening hiernaast.

De vernieuwingsfrequentie van de statistieken wijzigen

De statistieken (Min, Max, Gemiddelde waarde en Standaardafwijking) zijn gebaseerd op het aantal vastleggingen weergegeven in de kolom Aantal bemonsteringen. U kunt het maximum aantal bemonsteringen wijzigen met de instelling Maximum aantal golfvormen op de pagina Algemeen van het dialoogvenster Voorkeuren.
5.13 Knopinfo aanwijzer

De **aanwijzer-knopinfo** is een vak waarin de waarden van de horizontale en verticale as worden weergegeven op de locatie van de muisaanwijzer. Het wordt tijdelijk weergegeven als u klikt op de achtergrond van een **gezichtspunt**.
5.14 Signaallinialen

De signaallinialen (soms cursors genaamd) helpen u om absolute en relatieve signaalniveaus te meten op een scoop, XY of spectrumgezichtspunt.

In het bovenstaande scoopgezichtspunt zijn de twee gekleurde vierkantjes aan de linker Kant van de verticale as de knoppen voor het verslepen van de liniaal voor kanaal A. Sleep een van deze naar beneden van de ruststand in de linkerbovenhoek en er zal een signaalliniaal (een horizontale stippellijn) uit komen.

Wanneer één of meer signaallinialen worden gebruikt, dan verschijnt de liniaallegende. Dit is een tabel met alle waarden van de signaalliniaal. Als u de liniaallegende sluit met de knop Sluiten, dan worden alle linialen verwijderd.

Signaallinialen kunnen ook werken in spectrum- en XY-gezichtspunten.

Knopinfo liniaal

Als u de muisaanwijzer over een van de linialen verplaatst, dan toont PicoScope Knopinfo met het nummer van de liniaal en het signaalniveau van de liniaal. In de bovenstaande afbeelding krijgt u hier een voorbeeld van te zien.
5.15 Tijdlinialen

De **tijdlinialen** meten tijd op een **scoopgezichtspunt** of frequentie op een **spectrumgezichtspunt**.

In het **scoopgezichtspunt** hierboven zijn de twee witte vierkantjes op de tijd-as de **tijdliniaal-knoppen**. Als u deze naar rechts versleept uit de linkerbenedenhoek, verschijnen er verticale stippellijnen, **tijdlinialen** genoemd. De linialen werken op dezelfde manier op een **spectrumgezichtspunt**, maar de liniaallegenda toont hun horizontale posities in eenheden van frequentie in plaats van tijd.

Knopinfo liniaal

Als u de muisaanwijzer over een van de linialen verplaatst, zoals in het bovenstaande voorbeeld, dan toont PicoScope knopinfo met het nummer van de liniaal en de tijdwaarde van de liniaal.

Liniaallegenda

De tabel aan de bovenkant van het gezichtspunt is de **liniaallegenda**. In dit voorbeeld toont de tabel dat tijdliniaal 1 op 148,0 microseconden staat, liniaal 2 op 349,0 microseconden en dat het verschil ertussen 201,0 microseconden is. Door te klikken op de knop **Sluiten** op de liniaallegenda verwijdert u ook alle linialen.

Frequentielegenda

De **frequentielegenda** in de rechterbenedenhoek van een scoopgezichtspunt toont \(1/\Delta\), waarbij \(\Delta\) het verschil is tussen de twee tijdlinialen. De nauwkeurigheid van deze berekening is afhankelijk van de nauwkeurigheid waarmee u de linialen heeft geplaatst. Gebruik voor meer nauwkeurigheid met periodieke signalen de functie **frequentiemeting** ingebouwd in PicoScope.
5.16 Faselinialen

Locatie: Scoopgezichtspunt

De faselinialen helpen de timing van een cyclische golfvorm te meten op een scoopgezichtspunt. In plaats van te meten ten opzichte van het activeringspunt zoals tijdlinialen, meten faselinialen ten opzichte van het begin en einde van een tijdsinterval dat u opgeeft. Metingen kunnen worden getoond in graden, procent of een aangepaste eenheid zoals geselecteerd in het vak liniaalinstellingen.

Om de faselinialen te gebruiken, sleept u de knoppen van de faseliniaal van hun inactieve positie op de golfvorm zoals hieronder getoond:

Als u beide faselinialen naar hun positie hebt gesleept zal het scoopgezichtspunt er als volgt uitzien (wij hebben ook twee tijdlinialen toegevoegd voor een reden die we later zullen verklaren):

Ruler legend

Ruler positions in time units
Ruler positions in phase units
Phase rulers
Start and end phase (double-click to edit)
In het bovenstaande Scoopgezichtspunt werden de twee faselinialen versleept om het begin en einde van een cyclus aan te geven.

De standaard begin- en eindfasewaarden van 0º en 360º onder de linialen worden hieronder weergegeven en kunnen worden bewerkt op een aangepaste waarde. Bij het meten van timings op een viertaktmotor is het bijvoorbeeld gebruikelijk om de eindfase te tonen als 720º aangezien één cyclus bestaat uit twee rotaties van de krukas.

Liniaallegenda

De faselinialen worden krachtiger als ze worden gebruikt in combinatie met tijdlinialen. Als beide typen linialen samen worden gebruikt zoals hierboven, dan toont de liniaallegenda de posities van de tijdlinialen in fase-eenheden en tijdseenheden. Als er twee tijdlinialen zijn geplaatst, toont de legenda ook het faseverschil tussen deze twee linialen. Sluit de liniaallegenda om alle linialen te verwijderen, inclusief de faselinialen.
5.17 Liniaalinstellingen

Locatie: Werkbalk activering

In het vak Liniaalinstellingen kunt u het gedrag van de tijdlinialen en faselinialen bepalen.

Fase-wrap

Als dit selectievakje is ingeschakeld, worden de tijdliniaalwaarden die door de faselinialen buiten het bereik worden geplaatst, terug in dat bereik geplaatst. Als de faselinialen bijvoorbeeld ingesteld zijn op 0° en 360°, dan zal de waarde van een tijdliniaal juist rechts van de 360° faseliniaal 0° bedragen, en de waarde van een tijdliniaal juist links van de 0° faseliniaal zal 359° zijn. Als dit vakje niet geselecteerd is, dan zijn de liniaalwaarden zonder beperking.

Fasepartitie

Door deze waarde in te stellen op meer dan 1 wordt de ruimte tussen de twee faselinialen gelijkmatig verdeeld in het opgegeven aantal intervallen. De intervallen worden aangegeven door onderbroken lijnen tussen de faselinialen. De linialen helpen u om complexe golfformen te interpreteren zoals de vacuümdruk van een viertaktmotor met fasen voor inlaat, compressie, ontsteking en uitlaat of een omgepoolde AC-golfform in schakelvoeding.

Eenheden

U kunt kiezen tussen Gradens, Procent of Aangepast. In Aangepast kunt u uw eigen eenheidssymbool of naam invoeren.
5.18 Liniaallegenda

De **liniaallegenda** is een vak met de posities van alle **linialen** die u hebt geplaatst op het **gezichtspunt**. Het wordt automatisch weergegeven als u een liniaal op het gezichtspunt plaatst:

![Time or frequency ruler](image)

Bewerken

U kunt de positie van een liniaal aanpassen door een waarde te bewerken in de eerste twee kolommen. Om een Griekse μ (het micro-symbool, één miljoenste of x 10⁻⁶) in te voegen, typt u de letter 'u'.

Volgen van linialen

Als er twee linialen geplaatst zijn op één kanaal verschijnt de **Vergrendelingsknop** naast die liniaal in de legenda. Klik op deze knop om ervoor te zorgen dat de twee linialen elkaar volgen. Als u een liniaal versleept, zal de andere liniaal volgen en een vaste scheiding behouden. De knop verandert in als de linialen vergrendeld zijn.

TIP: Om een paar elkaar volgende linialen in te stellen met een bekende afstand ertussen, klikt u eerst op de **Vergrendelingsknop**. Vervolgens bewerkt u de twee waarden in de liniaallegenda zodat de linialen op de gewenste afstand van elkaar liggen.

Faselinialen

Als er **Faselinialen** in gebruik zijn, geeft de liniaallegenda aanvullende informatie weer.

Zie ook: frequentielegenda.

5.19 Frequentielegenda

De **frequentielegenda** wordt weergegeven als u twee **tijdlinalen** hebt geplaatst op een **scoopgezichtspunt**. Het toont 1/λ in hertz (de SI-eenheid van frequentie, gelijk aan cycli per seconde), waarbij λ het tijdsverschil is tussen de twee linialen. U kunt dit gebruiken om de frequentie van een periodieke golfform te schatten, maar u krijgt meer accurate resultaten door een frequentiemeting te maken met de **knop Meting toevoegen** op de werkbalk Metingen.

Voor frequenties tot 1,666 kHz kan de frequentielegenda ook de frequentie weergeven in TPM (omwentelingen per minuut). De TPM-weergave kan worden ingeschakeld of uitgeschakeld in **Voorkeuren > Opties**.
5.20 Eigenschapvenster

Locatie: Gezichtspunten > Eigenschappen bekijken

Doel: bevat een overzicht van de instellingen die PicoScope 6 gebruikt

Het **Eigenschapvenster** wordt weergegeven aan de rechterkant van het PicoScope-venster.

<table>
<thead>
<tr>
<th>Properties</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample interval</td>
<td>64 ns</td>
</tr>
<tr>
<td>Sample rate</td>
<td>15.63 MS/s</td>
</tr>
<tr>
<td>No. samples</td>
<td>781,250</td>
</tr>
<tr>
<td>H/W Resolution</td>
<td>12 bits</td>
</tr>
</tbody>
</table>

Aantal monsters. Het aantal vastgelegde monsters. Dit kan lager zijn dan het aantal aangevraagd in de instelling **Maximum aantal monsters.** Een getal tussen haakjes is het aantal geïnterpoleerde monsters als interpolatie is ingeschakeld.

Venster. De vensterfunctie toegepast op de gegevens vóór het verwerken van het spectrum. Deze optie wordt geselecteerd in het dialoogvenster **Spectrum-opties.**

Tijd venster. Het aantal monsters dat PicoScope gebruikt om een spectrum te berekenen dat gelijk is aan tweemaal het aantal bins. Dit aantal monsters wordt uitgedrukt als een tijdsinterval of tijdvenster. Het wordt gemeten vanaf het begin van de vastlegging.

Resolutieverbetering. Het aantal bits, inclusief de resolutieverbetering, geselecteerd in het dialoogvenster Kanaaloopjes.

Effectieve Res (effectieve resolutie; alleen van toepassing op oscilloscopen met flexibele resolutie). PicoScope probeert de waarde te gebruiken die is opgegeven in de instelling **Hardwareresolutie** in de werk balk Vastleggingsinstellingen, maar in sommige spanningsbereiken levert de hardware een lagere effectieve resolutie. De beschikbare resoluties worden opgegeven in het gegevensblad van het apparaat.

Snelheid vastlegging. Het aantal golfvormen vastgelegd per seconde. Alleen weergegeven in Persistentiemo du s.
5.21 Aangepaste probes

Een probe is elke transductor, meetapparaat of ander accessoire waarmee u verbinding maakt via een ingangskanaal voor uw oscilloscoop. PicoScope heeft een ingebouwde bibliotheek van veelgebruikte types probes, zoals de x1 en x10 spanningsprobes gebruikt in combinatie met de meeste oscilloscopen. Als uw probe niet is opgenomen in deze lijst, kunt u het dialoogvenster Aangepaste onderzoeken gebruiken om een nieuwe probe te definiëren. Aangepaste probes kunnen elk spanningsbereik hebben dat binnen de mogelijkheden ligt van de oscilloscoop, in elke eenheid weergeven en lineaire of niet-lineaire karakteristieken hebben.

Aangepaste probe-definities zijn vooral handig als u de uitgang van de probe wenst weer te geven in andere eenheden dan volt of als u lineaire of niet-lineaire correcties wenst aan te brengen aan de gegevens.
5.22 Rekenkanalen

De foto hieronder zet in drie stappen het gebruik van rekenkanalen uiteen:

1. **Opdracht Gereedschap > Rekenkanalen.** Klik hierop om het dialoogvenster Rekenkanalen te openen, getoond rechts bovenaan in de bovenstaande afbeelding.

2. **Dialoogvenster Rekenkanalen** Dit is een lijst met alle beschikbare rekenkanalen. In het bovenstaande voorbeeld staan alleen de ingebouwde functies.

 Soms ziet u een knipperend waarschuwingssymbool - -aan de onderkant van de rekenkanaal-as. Dit betekent dat het kanaal niet kan worden weergegeven omdat er een ingang ontbreekt. Dit treedt bijvoorbeeld op als u de functie A+B inschakelt terwijl kanaal B is ingesteld op Uit.
5.23 Referentiegolfvormen

Een **referentiegolfvorm** is een opgeslagen kopie van een ingangssignaal. U kunt deze aanmaken door met de rechtermuisknop op het gezichtspunt te klikken, de opdracht **Referentiegolfvormen** te selecteren en het kanaal te kiezen om te kopiëren. Deze golfvorm kan worden weergegeven in een scoop- of spectrumgezichtspunt, op dezelfde manier als een ingangssignaal. Zoals een ingangssignaal heeft het zijn eigen meetas, knop voor **schaalverdeling en offset** en kleur.

Voor meer instellingen van referentiegolfvormen gebruikt u het dialoogvenster **Referentiegolfvormen** zoals hieronder afgebeeld.

1. **Knop referentiegolfvormen.** Klik hierop om het dialoogvenster **Referentiegolfvormen** te openen, getoond in de bovenstaande afbeelding.

2. **Dialoogvenster referentiegolfvormen.** Dit is een lijst met alle beschikbare ingangskanalen en referentiegolfvormen. In het bovenstaande voorbeeld zijn ingangskanalen **A** en **B** ingeschakeld, zodat ze worden weergegeven in het gedeelte **Available.** Het gedeelte **Library** is in het begin leeg.

3. **Knop Dupliceren.** Als u een ingangskanaal of referentiegolfvorm selecteert en op deze knop klikt, wordt het geselecteerde item gekopieerd naar het gedeelte **Library.**

4. **Gedeelte Library.** Dit toont al uw referentiegolfvormen. Elke referentiegolfvorm heeft een selectievakje om de weergave van de golfvorm in of uit te schakelen.

5. **Referentiegolfvorm.** Eenmaal ingeschakeld, verschijnt een referentiegolfvorm in het geselecteerde scoop- of spectrum gezichtspunt. U kunt de **schaalverdeling en offset** veranderen zoals bij andere kanalen. In het bovenstaande voorbeeld is de nieuwe referentiegolfvorm (onder) een kopie van kanaal **A.**

6. **Knop voor asinstellingen.** Hiermee wordt een dialoogvenster geopend voor **schaalverdeling** en **asinstellingen.** Hiermee kunt u de schaalverdeling, as en vertraging voor deze golfvorm aanpassen.
5.24 Seriële decodering

U PicoScope gebruiken om de gegevens uit een seriële bus te decoderen. In tegenstelling tot een conventionele bus-analyser, laat PicoScope u de elektrische golfvorm in hoge resolutie zien op hetzelfde moment als de gegevens. De gegevens zijn geïntegreerd in het scoopgezichtspunt, dus er is geen noodzaak om een nieuwe lay-out te leren.

Seriële decodering gebruiken

1. Selecteer **Gereedschap > Seriële decodering**.

2. Vul het dialoogvenster **seriële decodering** in.

3. Kies om de gegevens te tonen In weergave, In venster of beide.

4. U kunt gelijktijdig meerdere kanalen in verschillende formaten decoderen. Gebruik het tabblad **Decoderen** onder de gegevenstabel 'In venster' (weergegeven in de bovenstaande afbeelding) om te selecteren welk gegevenskanaal weer te geven in de tabel.
5.25 maskerlimiettesten

Maskerlimiettesten is een functie die u vertelt wanneer een golfvorm of spectrum buiten een opgegeven gebied, een *masker*, gaat. Dit masker wordt getekend op het *scoopgezichtspunt* of *spectrumgezichtspunt*. PicoScope kan automatisch het masker tekenen door een vastgelegde golfvorm te traceren of u kunt het handmatig tekenen. Maskerlimiettests is handig voor het detecteren van intermitterende fouten tijdens foutopsporing en voor het vinden van defecte eenheden tijdens productietests.

Ga om te beginnen naar het hoofdmenu van PicoScope en selecteer **Gereedschap > Maskers > Maskers toevoegen.** Hiermee opent u het dialoogvenster *Maskerbibliotheek*. Als u een masker hebt geselecteerd, geladen of gemaakt, verandert het scoopgezichtspunt als volgt:

(A) **Masker**
Toont de toegestane zone (in wit) en de niet-toegestane zone (in blauw). Klik met de rechtermuisknop op het gebied van het masker en selecteer **Masker bewerken** om het dialoogvenster *Masker bewerken* te openen. U kunt de maskerkleuren veranderen met **Gereedschap > Voorkeuren > Kleuren**; maskers toevoegen, verwijderen en opslaan met het *Maskermenu*; en maskers verbergen en weergeven met **Gezichtspunten > menu Maskers**.

(B) **Mislukte golfvormen**
Als de golfvorm de niet-toegestane zone betreedt, wordt deze als een fout geteld. Het deel van de golfvorm dat de fout veroorzaakte wordt gecodeerd en blijft op het scherm staan totdat de vastlegging opnieuw wordt opgestart.

(C) **Metingen-tabel**
Het aantal fouten sinds het begin van de huidige scoop wordt weergegeven in de *tabel met metingen*. U kunt de fouttelling wissen door de vastleggingen te stoppen en opnieuw te starten met behulp van de **Start/Stop**-knop. De tabel met metingen kan **andere metingen** weergeven samen met de maskerfouttelling.
5.26 Alarmen

Alarmen zijn acties die kunnen worden geprogrammeerd om uit te worden gevoerd door PicoScope als er bepaalde gebeurtenissen optreden. Gebruik de opdracht Gereedschap > Alarmen om het dialoogvenster Alarmen te openen waar u deze functie kunt configureren.

De gebeurtenissen die een alarm kunnen activeren zijn:

- Opnemen - als de oscilloscoop een volledige golfvorm of blok golfvormen heeft opgenomen.
- Buffers vol - als de golfvorm-buffer vol raakt.
- Masker(s) fout - als een golfvorm niet slaagt in een masker-limiettest.

De acties die PicoScope kan uitvoeren zijn:

- Biep
- Geluid afspelen
- Opnemen stoppen
- Opname opnieuw starten
- Uitvoerbaar bestand afspelen
- Huidige buffer opslaan
- Alle buffers opslaan

Zie Dialoogvenster Alarmen voor meer details.
5.27 Buffernavigatie

De PicoScope-golfvormbuffer kan tot 10.000 golfvormen bevatten, afhankelijk van de hoeveelheid beschikbaar geheugen in de oscilloscoop. Met de Buffernavigatie kunt u snel door de buffer bladeren om de gewenste golfvorm te vinden.

Klik om te beginnen op de Buffernavigatie knop in de werkbalk voor buffernavigatie. Hiermee opent u het venster van de Buffernavigatie:

Klik op een van de zichtbare golfvormen om deze naar voren te brengen voor nadere inspectie, of gebruik de instellingen:

Te tonen buffers

Als een van de kanalen een masker heeft, dan kunt u het kanaal uit deze lijst selecteren. De Buffernavigatie zal vervolgens alleen de golfvormen tonen die de maskertest op dat kanaal niet hebben doorstaan.

Start:
Ga naar golfvorm nummer 1.

Achteruit:
Ga naar de volgende golfvorm aan de linkerkant.

Inzoomen:
Wijzig de schaal van de golfvormen in het venster voor Buffernavigatie. Er zijn drie zoomniveaus:

- **Groot:** standaardweergave. Een golfvorm vult de hoogte van het venster.
- **Medium:** een middelgrote golfvorm boven een rij kleine golfvormen.
- **Klein:** een raster met kleine golfvormen. Klik op de bovenste of onderste rij afbeeldingen om het raster omhoog of omlaag te schuiven.

Uitzoomen:
Ga naar de volgende golfvorm aan de rechterkant.

Vooruit:
Ga naar de laatste golfvorm in de buffer. (Het aantal golfvormen hangt af van de instelling Gereedschap > Voorkeuren > Algemeen > Maximaal aantal golfvormen en het type scoop verbonden).

Klik eender waar in het hoofdvenster van PicoScope om het venster voor Buffernavigatie te sluiten.
6 Menu’s

Menu’s zijn de snelste manier om de hoofdfuncties van PicoScope te openen. De Menubalk is altijd aanwezig bovenaan het hoofdvenster van PicoScope, net onder de titelbalk van het venster. U kunt klikken op een van de menu-items of drukken op de Alt-toets en vervolgens naar het menu navigeren met behulp van de pijltjestoetsen of drukken op de Alt-toets gevolgd door de onderstreepte letter in een van de menu-items.

De lijst met items in de menubalk kan variëren afhankelijk van de vensters die u open hebt in PicoScope.

Click a menu now for more information

File Edit Views Measurements Tools Help
6.1 Menu Bestand

Locatie: Menu balk > Bestand

Doel: Geeft toegang tot bewerkingen voor het importeren en exporteren van bestanden

Apparaat aansluiten

Deze opdracht verschijnt alleen als er geen scoop is aangesloten is. Het opent het dialoogvenster Apparaat aansluiten, waarmee u het apparaat kunt selecteren dat u wilt gebruiken.

Openen

Tip: gebruik de Page Up en Page Down-toetsen om te bladeren door alle golfvormbestanden in dezelfde map.

Opslaan

Hiermee slaat u alle golfvormen op met de bestandsnaam in de titelbalk. Als u nog geen bestandsnaam hebt opgegeven, dan wordt het dialoogvenster Opslaan als geopend om u een naam te vragen.

Opslaan als

Opent het dialoogvenster Opslaan als. Hier kunt u de instellingen, golfvormen, aangepaste probes en rekenkanalen opslaan voor alle gezichtspunten in verschillende indelingen. Alleen de golfvormen voor de modus die momenteel in gebruik is (Scoopmodus of Spectrummodus) worden opgeslagen.

In Persistentiemodus heet deze opdracht persistentie opslaan als. Hierbij worden alleen de gegevens voor deze modus opgeslagen.

Opstartinstellingen

Hiermee opent u het menu Opstartinstellingen.

Afdrukvoorbeeld

Dit opent het venster Afdrukvoorbeeld, waarmee u kunt zien hoe uw werkruiimte wordt afgedrukt wanneer u de opdracht Afdrukkken gebruikt.
Afdrukken. Hiermee opent u een standaard Windows-dia- loogvenster voor afdrukken. In dit venster kiest u een printer, stelt u de afdrukopties in en vervolgens drukt u het geselecteerde gezichtspunt af.

Recente bestanden. Een lijst van onlangs geopende of opgeslagen bestanden. Deze lijst wordt automatisch samengesteld. U kunt de lijst wissen met behulp van de pagina Bestanden van het dia- loogvenster Voorkeuren.

Afsluiten. Sluit PicoScope af zonder alle gegevens op te slaan.

6.1.1 Dialoogvenster Opslaan als

Locatie:
Bestand > *Alle golfvormen Opslaan als* of *Huidige golfvorm opslaan als*

Doel:
hiermee kunt u uw golfvormen en instellingen (met inbegrip van aangepaste probes en actieve rekenkanalen) opslaan in een bestand met **verschillende indelingen**

Typ uw bestandsnaam in het vak *Bestandsnaam* en selecteer een bestandsindeling uit de meerkeuzelijst *Opslaan als*. U kunt gegevens opslaan in de volgende indelingen:

- **Data-bestanden (.psdata)**
Hiermee worden golfvormen en instellingen van het huidige apparaat opgeslagen. Dit kan worden geopend op elke computer met PicoScope.
Configuratiebestanden (.pssettings) Hiermee worden alle instellingen (maar geen
golfvormen) opgeslagen van het huidige
apparaat. Dit kan worden geopend op elke
computer met PicoScope.

CSV (door komma gescheiden) bestanden (.csv) Hiermee worden golfvormen opgeslagen als
een tekstbestand met door komma's
gescheiden waarden. Deze indeling is geschikt
voor het importeren in spreadsheets zoals
Microsoft Excel. De eerste waarde op elke
regel is de tijdstempel. Deze stempel wordt
gevolgd door één waarde voor elk actief
kanaal, inclusief momenteel weergegeven
rekenkanalen. (Details)

Tekst (door tabs gescheiden) bestanden (.txt) Hiermee worden golfvormen opgeslagen als
een tekstbestand met door tabs gescheiden
waarden. De waarden zijn dezelfde als die in
de CSV-indeling. (Details)

Bitmap-afbeeldingen (.bmp) Hiermee wordt een afbeelding van de
golfvorm, het raster en de linialen
opgeslagen in de Windows BMP-indeling. De
afbeelding is 800 pixels breed en 600 pixels
hoog, in 16 miljoen kleuren en niet-
gecomprimeerd. BMP-bestanden zijn geschikt
voor het importeren in desktoppublishing-
programma's van Windows.

GIF afbeeldingen (.gif) Hiermee worden de golfvormen, het raster en de linialen
opgeslagen in de Compuserve GIF-
indeling. Het beeld is 800 pixels breed bij
600 pixels hoog, in 256 kleuren en
gecomprimeerd. GIF-bestanden worden veel
gebruikt om webpagina's te illustreren.

Geanimeerde GIF-afbeelding (*.gif) Hiermee maakt u een GIF-animatie van alle
golfvormen in de buffer in de juiste volgorde.
Elke golfvorm is opgemaakt zoals in de enkele
GIF-indeling hierboven beschreven.

PNG-afbeeldingen (.png) Hiermee worden het raster, de linialen en
golfvormen opgeslagen in PNG-formaat. De
afbeelding is 800 pixels breed en 600 pixels
hoog, in 16 miljoen kleuren en niet-
gecomprimeerd.

Matlab 4-bestanden (.mat) Hiermee worden de golfvormgegevens
opgeslagen in de MATLAB-4-indeling.

Opties
De eerste drie opties bepalen wat er gebeurt als de golfvormbuffer meer dan één
golfvorm bevat:

Alle golfvormen Sla alle golfvormen op in een enkel .PSDATA-
bestand. Na het laden van het bestand kunt u
stapsgewijs door de golfvormen gaan met
behulp van de buffernavigatiewerkbalk.
<table>
<thead>
<tr>
<th>Alleen huidige golfvorm</th>
<th>Sla de enkele golfvorm op die momenteel wordt weergegeven.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Golfvormbuffers</td>
<td>Sla de opgegeven lijst of het bereik van golfvormen op. Elke golfvorm wordt aangeduid met het indexnummer. Bijvoorbeeld:</td>
</tr>
<tr>
<td></td>
<td>1, 2, 9, 10</td>
</tr>
<tr>
<td></td>
<td>2, 5–10</td>
</tr>
<tr>
<td>Alleen ingezoomde delen</td>
<td>Als de golfvorm horizontaal is ingezoomd slaat u alleen het zichtbare gedeelte op.</td>
</tr>
</tbody>
</table>
6.1.1.1 Bestandsindelingen voor het exporteren van gegevens

PicoScope 6 kan onbewerkte gegevens exporteren in tekst of binaire indeling:

Op tekst gebaseerde bestandsindelingen

- Gemakkelijk te lezen zonder speciale programma's
- Kan worden geïmporteerd in standaard spreadsheetprogramma's
- De bestanden zijn heel groot als er veel monsters in de gegevens zijn (de bestanden zijn daarom beperkt tot ongeveer 1 miljoen waarden per kanaal)

[Details tekstbestandsindeling](#)

Binaire bestandsindeling

- De bestanden blijven relatief klein en kunnen in sommige gevallen zelfs worden gecomprimeerd (dit betekent dat de hoeveelheid opgeslagen gegevens onbeperkt is)
- Er is een speciaal programma nodig om de bestanden te lezen of de gebruiker moet een programma schrijven om de gegevens te lezen uit het bestand

Als u meer dan 64 K waarden per kanaal moet opslaan, dan moet u een binaire bestandsindeling gebruiken zoals de MATLAB® MAT-bestandsindeling.

[Details binaire bestandsindeling](#)

Gegevenstypen voor het opslaan van gegevens van PicoScope 6

Ongeacht of de gegevenstypen werden geladen vanuit een binair bestand of vanuit een tekstbestand, raden we de volgende gegevensindelingen aan voor het opslaan van de waarden uit een PicoScope 6-gegevensbestand:

- Bemonsterde gegevens (zoals spanningen) moeten 32-bits enkele precisie drijvende komma-gegevenstypes gebruiken.
- Tijden moeten 64-bit dubbele precisie drijvende komma-gegevenstypes gebruiken.
6.1.1.1 Tekstindelingen

Bestanden in tekstindeling die worden geëxporteerd door PicoScope 6 zijn gecodeerd in de standaard UTF-8-indeling. Dit is een populaire indeling waarin een groot aantal tekens kan worden weergegeven terwijl sommige compatibiliteit wordt behouden met de ASCII-tekenset als alleen standaard West-Europese tekens en getallen worden gebruikt in het bestand.

CSV (comma separated values)

CSV-bestanden slaan gegevens op in de volgende indeling:

```
Tijd, kanaal A, kanaal B
(µs), (V), (V)
-500,004, 5,511, 1,215
-500,002, 4,724, 2,130
-500, 5,552, 2,212
```

Elke waarde wordt gevolgd door een komma op een lijn om een kolom gegevens weer te geven en een regeleinde aan het einde van de lijn om een nieuwe rij gegevens weer te geven. De beperking van 1 miljoen waarden per kanaal voorkomt dat overdreven grote bestanden worden gemaakt.

Opmerking. CSV-bestanden zijn niet de beste keuze als u werkt in een taal die gebruik maakt van de komma als decimaalteken. Probeer in plaats daarvan de indeling met tabscheiding die op bijna dezelfde manier werkt.

Door tabs gescheiden

Door tabs gescheiden bestanden slaan gegevens op in de volgende indeling:

```
Tijd    Kanaal A    Kanaal B
(µs)    (V)        (V)
500,004 5,511      1,215
500,002 4,724      2,130
500     5,552      2,212
```

In de bestanden wordt elke waarde gevolgd door een tab-teken op een lijn om een kolom gegevens weer te geven en een regeleinde aan het einde van de lijn om een nieuwe rij gegevens weer te geven. Deze bestanden werken in elke taal en zijn een goede keuze voor het internationaal delen van gegevens. De beperking van 1 miljoen waarden per kanaal voorkomt dat overdreven grote bestanden worden gemaakt.
6.1.1.1.2 Binaire indelingen

PicoScope 6 kan gegevens exporteren in versie 4 van de .mat binaire bestandsindeling. Dit is een open indeling en de volledige specificatie is vrij verkrijgbaar op de website www.mathworks.com. PicoScope 6 slaat gegevens op in de MAT-bestandsindeling zoals hieronder wordt uiteengezet.

Importeren in MATLAB

Laad het bestand in uw werkruimte met behulp van deze syntaxis:

```plaintext
load myfile
```

De gegevens van elk kanaal worden opgeslagen in een array-variabele met de naam van het kanaal. De bemonsterde gegevens voor kanalen A tot D zouden dus in vier arrays staan met de namen `A`, `B`, `C` en `D`.

Er is slechts één set tijdgegevens voor alle kanalen en deze wordt geladen in een van twee mogelijke indelingen:

1. Een begintijd, een interval en een lengte. De variabelen krijgen de namen `Tstart`, `Tinterval` en `Length`.
2. Een tijd-array (soms gebruikt voor ETS-gegevens). De tijd-array krijgt de naam `T`.

Als de tijden worden ingeladen als `Tstart`, `Tinterval` en `Length`, dan kunt u de volgende opdracht gebruiken om de gelijkwaardige array van tijden te maken:

```plaintext
T = [Tstart : Tinterval : Tstart + (Length - 1) * Tinterval];
```

Opmerking: De grootte van het grootste bestand dat MATLAB kan openen hangt af van de bronnen van de computer. Het is daarom mogelijk voor PicoScope om een MATLAB-bestand te maken die sommige installaties van MATLAB mogelijk niet kunnen openen. Wees bewust van dit risico bij het opslaan van cruciale gegevens.

De bestandsindeling ontdekken

De hierboven beschreven variabelen (onder importeren in MATLAB) worden opgeslagen in een reeks gegevensblokken, elk voorafgegaan door een koptekst. Elke variabele heeft een eigen kop- en gegevensblok en de overeenkomstige namen van de variabelen worden erbij opgeslagen (zoals `A`, `B`, `Tstart`). In de volgende hoofdstukken wordt beschreven hoe elke variabele uit het bestand moet worden gelezen.

De volgorde van de gegevensblokken is niet opgegeven. De programma's moeten daarom kijken naar de variabelenamen om te beslissen welke variabele momenteel wordt geladen.

De koptekst

Het bestand bestaat uit een aantal gegevensblokken voorafgegaan door kopteksten van 20-bytes. Elke kop bevat vijf 32-bits gehele getallen (zoals beschreven in de onderstaande tabel).
De 'Gegevensindeling' in de eerste 4-bytes beschrijft het type numerieke gegevens in de array.

<table>
<thead>
<tr>
<th>Waarde</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Dubbel (64-bits drijvende komma)</td>
</tr>
<tr>
<td>10</td>
<td>Enkel (32-bits drijvende komma)</td>
</tr>
<tr>
<td>20</td>
<td>Geheel getal (32-bits)</td>
</tr>
</tbody>
</table>

Het 'aantal waarden' is een 32-bits geheel getal met een beschrijving van het aantal numerieke waarden in de array. Deze waarde kan 1 zijn voor variabelen die slechts één waarde beschrijven; maar voor arrays van monsters of tijden mag u verwachten dat dit een groot aantal zal zijn.

De 'Naamlengte' is de lengte van de naam van de variabele als een ASCII-tekenreeks met 1-byte per teken eindigend op nul. Het laatste afsluitende teken ('\0') is opgenomen in de 'Naamlengte' zodat als de naam van de variabele "TStart" is (hetzelfde als 'TStart\0'), dan zal de naamlengte 7 zijn.

Het gegevensblok begint met de naam van de variabele (zoals A, Tinterval) en u moet het aantal bytes inlezen beschreven door het gedeelte 'Naamlengte' van de koptekst (vergeet niet dat de laatste byte in de tekenreeks \0' is als uw programmeertaal hier rekening mee moet houden).

Het resterende deel van het gegevensblok omvat de werkelijke gegevens zelf. Lees daarom het aantal waarden beschreven in het gedeelte 'Aantal waarden' van de koptekst. Vergeet niet om rekening te houden met de grootte van elke waarde zoals beschreven in het gedeelte 'Gegevensindeling' van de koptekst.

6.1.2 Menu opstartinstellingen
Locatie: **Bestand > Opstartinstellingen**

Doel: hiermee kunt u de opstartinstellingen van PicoScope 6 laden, opslaan en herstellen

Opstartinstellingen opslaan. Slaat uw huidige instellingen op zodat u deze kunt gebruiken na het selecteren van **Laad opstartinstellingen**. Deze instellingen worden onthouden van de ene PicoScope 6-sessie naar de volgende.

Laad opstartinstellingen. Keert terug naar de instellingen die u hebt gemaakt met de opdracht **Opstartinstellingen opslaan**.

Reset opstartinstellingen. Hiermee verwijdert u de opstartinstellingen die u hebt gemaakt met de opdracht **Opstartinstellingen opslaan** en herstelt u de standaardinstellingen van de installatie.
6.2 Menu Bewerken

Locatie: Menubalk > Bewerken
Doel: dit geeft toegang tot functies voor het klembord en het bewerken van aantekeningen

Kopiëren als tekst. Kopieert de gegevens in het actieve gezichtspunt als tekst naar het klembord. U kunt de gegevens plakken in een werkblad of een andere toepassing. De tekstopmaak is hetzelfde als die gebruikt door het dialoogvenster Opslaan als als u de indeling .txt kiest.

Details. [Alleen PicoScope Automotive] Dit opent het dialoogvenster Voertuiggegevens waarmee u gegevens kunt invoeren over het voertuig dat wordt getest.
6.2.1 Aantekeningen
Locatie: Bewerken > Aantekeningen
Doel: een tekstvak om uw eigen aantekeningen in te voeren

6.2.2 Dialoogvenster voertuiggegevens (alleen PicoScope automobiel)
Locatie: Bewerken > Details
Bestand > Opslaan

Doel: een voertuigdatabase om u te helpen uw klanten te volgen
6.3 Menu Gezichtspunten

Locatie: Menu balk > Gezichtspunten, of klik met de rechtermuisknop op een gezichtspunt

Doel: Hiermee stelt u de opmaak van het huidige gezichtspunt in. Dit is een rechthoekig gebied van het PicoScope-venster waarin scoop, spectrum of andere soorten gegevens worden weergegeven.

De inhoud van het menu Gezichtspunten kan variëren, afhankelijk van de plaats waar u klikt en hoeveel gezichtspunten er open staan. Als de huidige gezichtspunten een Tabel met metingen bevatten, dan verschijnt een gecombineerd menu voor Metingen en Gezichtspunten.

Gezichtspunt toevoegen:
Een gezichtspunt van het geselecteerde type toevoegen (scoop, XY of spectrum). In automatische rasteropmaak-modus (standaardinstelling), schikt PicoScope het raster om plaats te maken voor het nieuwe gezichtspunt, tot een limiet van vier gezichtspunten. Elk nieuw gezichtspunt wordt toegevoegd als een tabblad in bestaande viewports. Als u een vaste rasteropmaak hebt geselecteerd, zal PicoScope deze niet veranderen.

Deelweergave:
(Alleen mixed signal-oscilloscopen) Schakel de analoge weergave en digitale weergave onafhankelijk in en uit.

Gezichtspunt hernoemen:
Wijzig de standaardtitel 'Scoop' of 'Spectrum' in een titel van uw keuze.

Gezichtspunt sluiten:
X-as: Selecteer een geschikt kanaal om te gebruiken als X-as. Standaard vertegenwoordigt de X-as de tijd. Als u in de plaats daarvan een ingangskanaal selecteert, dan zal het scoопgezichtspunt een XY-gezichtspunt worden waarin een ingang tegenover een andere ingang wordt uitgezet. Een snellere manier om een XY-gezichtspunt te maken is via Gezichtspunt toevoegen (zie hierboven).

Herstel standaardafmetingen gezichtspunt: Als u de afmetingen van een van de gezichtspunten hebt gewijzigd door de verticale of horizontale scheidingsbalken tussen viewports te verschuiven, dan kunt u met deze optie alle viewports terugzetten op hun oorspronkelijke afmetingen.

Gezichtspunten schikken: als er meerdere gezichtspunten gestapeld zijn in dezelfde viewport, dan kunt u deze verplaatsen naar hun eigen viewport.

Assen automatisch ordenen: dit verandert de schaalverdeling en offsets om het gezichtspunt te vullen en overlappingen te vermijden.

Herstel bekijk de opmaak: hiermee wordt de schaalfactor en offset van het geselecteerde gezichtspunt opnieuw ingesteld op de standaardwaarden.

Eigenschappen bekijken: dit toont het Eigenschappenvenster met de scoopinstellingen. Normaal is dit verborgen.

Referentiegolfvormen: hiermee kunt u een van de beschikbare kanalen kopiëren naar een nieuwe referentiegolfvorm en deze toevoegen aan het gezichtspunt.

Maskers: selecteer hier welke maskers (Zie maskerlimiettesten) zichtbaar zijn.

Meting toevoegen: Zie Menu Metingen.

Meting bewerken: Meting verwijderen:
6.3.1 Dialoogvenster aangepast raster

Locatie: klik met de rechtermuisknop op het gezichtspunt > **Menu**

Gezichtspunten > **Rasteropmaak** > **Aangepaste schikking...**

of **Gezichtspunten** > **Rasteropmaak**

Doel: als het gedeelte **Rasteropmaak** van het menu **Gezichtspunten** niet de opmaak bevat die u wenst, dan geeft dit dialoogvenster meer opties

![Custom grid layout](image)

U kunt het raster met **gezichtspunten** opmaken met een willekeurig aantal rijen en kolommen tot 4 bij 4. Vervolgens kunt u de gezichtspunten verslepen naar verschillende locaties in het raster.
6.4 Menu Metingen

Locatie: \textbf{Menubalk > Metingen}

Doel: hiermee stelt u de \textit{tabel met metingen} in

\begin{itemize}
 \item \textbf{Meting toevoegen}. Hiermee voegt u een rij toe aan de \textit{tabel met metingen} en wordt het dialoogvenster \textit{Meting bewerken} geopend. U kunt deze knop ook vinden op de werkbalk \textit{Metingen}.
 \item \textbf{Meting bewerken}. Hiermee gaat u naar het dialoogvenster \textit{Meting verwijderen}. Hiermee verwijdert u de geselecteerde rij uit de \textit{tabel met metingen}.
 \item \textbf{Lettergrootte raster}. Hiermee stelt u de tekengrootte in voor de tekst in de \textit{tabel met metingen}.
 \item \textbf{Automatische kolombreedte}. Als deze knop ingedrukt is, passen de kolommen van de \textit{tabel met metingen} zich voortdurend aan aan de inhoud telkens wanneer de tabel wordt gewijzigd. Klik nogmaals om de knop uit te schakelen.
\end{itemize}
6.4.1 Dialoogvenster Meting toevoegen/bewerken

Locatie: Werkbalk Metingen > Meting toevoegen of Knop Meting bewerken
Menu Gezichtspunt > Meting toevoegen of Knop Meting bewerken
Dubbelklik op een meting in de tabel met metingen.

Doel: hiermee kunt u de meting van een golfvorm toevoegen aan het geselecteerde gezichtspunt of een bestaande meting bewerken.

PicoScope vernieuwt automatisch de meting telkens wanneer het de golfvorm bijwerkt. Als dit de eerste meting is voor het gezichtspunt, dan maakt PicoScope een nieuwe tabel met metingen om de meting weer te geven; anders zal het de nieuwe meting onderaan de bestaande tabel.

Kanaal
Welke van de kanalen van de oscilloscoop te meten.

Type
PicoScope kan een breed scala metingen berekenen voor golfvormen. Zie scoopsmetingen (voor gebruik met scoopsgezichtspunten) of spectrummetingen (voor gebruik met spectrumgezichtspunt).

Sectie
Meet de volledige trace, alleen de sectie tussen linialen of, indien toepasselijk, een enkele cyclus aangegeven door één van de linialen.

Geavanceerd
Geeft toegang tot de geavanceerde instellingen van metingen.
6.4.2 Geavanceerde instellingen metingen

Locatie: Dialoogvenster **Meting toevoegen** of **Meting bewerken > Geavanceerd**

Doel: de parameters van bepaalde metingen instellen zoals filters en **spectrumanalyse**

Drempel

Sommige metingen, zoals **Stijgtijd** en **Daaltijd** kunnen worden uitgevoerd met verschillende drempels. Selecteer de juiste drempels hier. Bij het vergelijken van stijg- en daaltijden met de specificaties van de fabrikant, is het belangrijk om dezelfde drempels te gebruiken voor alle metingen.

Spectrumbereik

Bij het meten van piekgerelateerde parameters zoals 'Frequentie op piek' in een **spectrumweergave**, kan PicoScope zoeken naar een piek nabij de opgegeven locatie van de **liniaal**. Deze optie vertelt PicoScope hoeveel frequentiebins te zoeken. De standaardwaarde is 5. Dit vertelt PicoScope om te zoeken van 2 bins onder de liniaal frequentie tot 2 bins boven de liniaal frequentie, met een totaal bereik van 5 bins, inclusief de liniaal frequentie.

Filter Control

- Enable Filter
- Automatic

Control

- Cutoff Frequency [0 - 0.5] 0.1
- Filter Size 30
Filterinstellingen
PicoScope kan een laagdoorlaatfilter toepassen op de statistieken om meer stabiele en meer accurate cijfers te verkrijgen. Filteren is niet beschikbaar op alle types metingen.

- **Filter inschakelen** - selectievakje om laagdoorlaatfiltering in te schakelen, indien beschikbaar. Er verschijnt een "F" achter de naam van de meting in de tabel met metingen.
- **Automatisch** - selectievakje om de kenmerken van de laagdoorlaatfilter automatisch in te stellen

Frequentielimiet
De frequentielimiet van de filter genormaliseerd op de meet snelheid. Bereik: 0 tot 0,5.

Breedte filter
Het aantal monsters gebruikt voor de opbouw van de filter

Harmonische instellingen
Deze opties zijn van toepassing op vervormingsmetingen in spectrum-gezichtspunten. U kunt opgeven welke harmonische waarden PicoScope gebruikt voor deze metingen.

- **Hoogste Harmonische**
 De hoogste harmonische waarde op te nemen bij de berekening van de vervormingskracht

- **Zoekbereik**
 Het aantal frequentiebins te zoeken, gericht op de verwachte frequentie, bij het zoeken naar een harmonische piek

- **Ruisdrempel**
 Het niveau in dB waarboven signaalpieken worden geteld als harmonische
6.5 Menu Gereedschap

Locatie: **Menubalk > Gereedschap**

Doel: dit geeft toegang tot diverse hulpmiddelen voor signaalanalyse

- **Aangepaste probes**: definieer hier nieuwe probes en kopieer, verwijder, verplaats en bewerk bestaande probes.
- **Rekenkanalen**: hier kunt u een kanaal toevoegen of bewerken. Rekenkanalen zijn een wiskundige functie van één of meer andere kanalen.
- **Referentiegolfvormen**: hier kunt u een kanaal maken, laden of opslaan als een kopie van een bestaand kanaal.
- **Seriële decodering**: hier kunt u de inhoud van seriële gegevens zoals CAN-bus decoderen en weergeven.
- **Alarmen**: geef hier acties op die moeten worden genomen bij bepaalde gebeurtenissen.
- **Maskers**: voer [maskerlimiettesten](#) uit op een golfvorm. Dit detecteert wanneer de golfvorm afwijkt van een opgegeven vorm.
- **Macrorecorder**: sla hier een reeks veelgebruikte bewerkingen op.
- **Voorkeuren**: stel verschillende opties in voor het gedrag van PicoScope.
6.5.1 Dialoogvenster aangepaste probes

Locatie: **Gereedschap > Aangepaste probes**, of klik op de knop **Kanaalopties**:

Doel: hier kunt u vooraf gedefinieerde probes selecteren en aangepaste probes instellen

De keuze aan probes kan variëren afhankelijk van de versie van de PicoScope-software die u gebruikt.

Inzicht in de probelijst

Alle probes die PicoScope kent zijn weergegeven onder drie hoofdthema's: **Ingebouwd, Bibliotheek en Geladen**. De probelijst wordt tussen sessies opgeslagen, zodat PicoScope nooit uw aangepaste probes vergeet, tenzij u ze verwijdert.

- **Ingebouwde probes.** De ingebouwde probes worden geleverd door Pico Technology en wijzigen niet, tenzij u een gemachtigde update van ons downloadt. Als voorzorgsmaatregel laat PicoScope u niet toe om deze probes te bewerken of verwijderen. Als u een van deze probes wenst te wijzigen, kunt u de probe kopiëren naar uw bibliotheek door te klikken op **Dupliceren** en de kopie vervolgens te bewerken in uw bibliotheek.

- **Bibliotheek probes.** Dit zijn de probes die u hebt gemaakt met behulp van een van de methoden die hier worden beschreven. U kunt al deze probes bewerken, verwijderen of dupliceren door te klikken op de juiste knop in het dialoogvenster.
Geladen probes. Hier worden de probes weergegeven uit PicoScope-gegevensbestanden (.psdata) of configuratiebestanden (.pssettings) die u hebt geopend totdat u ze naar uw bibliotheek kopieert. U kunt deze probes niet rechtstreeks bewerken of verwijderen, maar u kunt klikken op Dupliceren om ze naar uw bibliotheek te kopiëren waar u ze kunt bewerken. U kunt ook probes importeren uit de aangepaste bereiken opgeslagen in PicoScope 5 .psd en .pss-bestanden, maar deze missen een aantal van de functies van PicoScope 6. (Zie "Upgrade van PicoScope 5" voor meer details.)

Een nieuwe probe toevoegen aan uw bibliotheek

Er zijn drie manieren om een nieuwe probe te maken:

1. Gebruik de knop Dupliceren zoals hierboven beschreven.
2. Klik op Nieuwe probe... om een nieuwe probe te definiëren.

Methoden 2 en 3 openen de Wizard aangepaste onderzoeken om u te begeleiden door het proces.
6.5.1.1 Wizard aangepaste onderzoeken

Locatie: **Dialoogvenster aangepaste onderzoeken** > Nieuwe Probe

Doel: hier kunt u aangepaste probes definiëren en aangepaste bereiken instellen

Het eerste dialoogvenster in de serie is ofwel het **dialoogvenster Maak een nieuwe aangepaste probe** of het **dialoogvenster Bewerk een bestaande aangepaste probe**.

6.5.1.1.1 Dialoogvenster Maak een nieuwe aanpaste probe

Locatie: **Dialoogvenster aangepaste onderzoeken** > Nieuwe Probe

Doel: dit geeft u een introductie voor het proces van het maken van een nieuwe aangepaste probe

Het gebruik van het dialoogvenster

Klik op **Volgende** om verder te gaan naar het **dialoogvenster Probe uitvoereenheden**.
6.5.1.1.2 Dialoogvenster Wijzig een bestaande aangepaste probe

Locatie: **Dialoogvenster Aangepaste onderzoeken** > Bewerken

Doel: dit geeft u een introductie voor het proces van het bewerken van een bestaande **aangepaste probe**

Het gebruik van het dialoogvenster

Klik op **Volgende** om verder te gaan naar het **dialoogvenster Probe uitvoereenheden**, waar u de aangepaste probe kunt bewerken.

Klik op **Sprong vooruit...** als u de basiskenmerken van de aangepaste probe al hebt ingesteld en een aangepast bereik handmatig wil toevoegen of wijzigen.
6.5.1.1.3 Dialoogvenster Probe uitvoereenheden

Locatie: [dialoogvenster Maak een nieuwe aangepaste probe] > Volgende

Doel: hier kunt u de eenheden kiezen die PicoScope zal gebruiken om de uitvoer van uw aangepaste probe weer te geven

Het gebruik van het dialoogvenster

- Om een standaard-eenheid te kiezen, klikt u op Gebruik een standaard-eenheid uit de lijst en selecteert u een eenheid uit de lijst.
- Om een aangepaste eenheid in te voeren, klikt u op Gebruik de hieronder gedefinieerde aangepaste eenheid en typt u de naam van de eenheid en het symbool in.

- Klik op Volgende om naar het dialoogvenster Schaal toepassingsmethode te gaan.
- Klik op Terug om terug te keren naar het dialoogvenster Maak een nieuwe aangepaste probe als dit een nieuwe probe is, of het dialoogvenster Wijzig een bestaande aangepaste probe als dit een bestaande probe is.
6.5.1.1.4 Dialogvenster Schaal toepassingsmethode

Locatie: **Dialogvenster Probe uitvoereenheden** > Volgende

Doel: hier kunt u het kenmerk definiëren dat PicoScope zal gebruiken om de spanningsuitvoer van de aangepaste probe om te zetten in een meting op het gezichtspunt

Het gebruik van het dialoogvenster

- Als u geen schaalverdeling of offset vereist, klikt u op **Pas geen schaal toe op de gegevens**.

- Als de probe lineaire schaalverdeling vereist, schakelt u **Gebruik een lineaire vergelijking** in en voert u de gradiënt (of schaalfactor) m in en de offset c in de vergelijking $y = mx + c$. Hierbij is y de weergegeven waarde en x de spanningsuitvoer van de probe.

- Als u een niet-lineaire functie wenst toe te passen op de uitvoer van de probe, kiest u **Gebruik een opzoektable...**, en vervolgens klikt u op de knop **Maak een opzoektable...** om een nieuwe opzoektable maken. Dit brengt u naar het dialoogvenster Schaalverdeling opzoektable.

- Klik op **volgende** om verder te gaan naar het dialoogvenster Bereikenbeheer.

- Klik op **Terug** om terug te keren naar het dialoogvenster Probe uitvoereenheden.
6.5.1.4.1 Dialogvenster Schaalverdeling Opzoek tabel

Locatie: Dialogvenster Schaal toepassingsmethode > Maak een opzoek tabel of De opzoek tabel bewerken

Doel: hier maakt u een opzoek tabel aan om een aangepaste probe te kalibreren

De opzoek tabel bewerken

Selecteer eerst de geschikte waarden in de vervolgkeuzelijsten Input-eenheden en Schaalverdeling eenheden. Als uw probe bijvoorbeeld een stroomklem is die één millivolt per ampère uitvoert over het bereik -600 tot +600 ampère, dan selecteert u als Input-eenheden millivolt en als Output-eenheden ampère.

Typ vervolgens enkele gegevens in de tabel voor schaalverdeling. Klik op de eerste lege cel aan de bovenkant van de tabel en typ "-600", druk vervolgens op de tab-toets en typ "-600". Als u klaar bent om het volgende paar waarden in te voeren, drukt u opnieuw op de tab-toets om een nieuwe rij te beginnen. U kunt ook met de rechtermuisknop klikken op de tabel om een meer gedetailleerd optiemenu te zien, zoals getoond in de afbeelding. In het bovenstaande voorbeeld hebben we een lichte niet-lineaire respons ingevoerd. Als de respons lineair was geweest, dan zou het gemakkelijker zijn geweest om de lineaire optie te gebruiken in het dialoogvenster Schaal toepassingsmethode.

Importeren/exporteren

Met de knoppen Importeren en Exporteer, kunt u de opzoek tabel vullen met gegevens uit een kommagescheiden of tabgescheiden tekstbestand en de opzoek tabel opslaan naar een nieuw bestand.

Voltooien

Klik op OK of Annuleren om terug te keren naar het dialoogvenster Schaal toepassingsmethode.
6.5.1.1.5 Dialoogvenster Bereikenbeheer

Locatie: **Dialoogvenster Schaal toepassingsmethode** > Volgende

Doel: hier kunt u de functie van PicoScope voor het automatisch aanmakenvan het bereik uitschakelen voor aangepaste probes. In de meeste gevallen zal de automatische procedure volstaan.

Het gebruik van het dialoogvenster

- Als u **Laat de software mijn bereiken automatisch beheren** selecteert en vervolgens klikt op **Volgende**, dan wordt het **Dialoogvenster Aangepaste probe identificatie** geopend. De automatische bereiken van PicoScope zouden ideaal moeten zijn voor de meeste toepassingen.

- Als u **Ik zal de aangepaste probe bereiken handmatig beheren** selecteert, dan wordt u na het klikken op **Volgende** naar het dialoogvenster **Handmatig bereik instellen** gebracht.

- Klik op **Terug** om terug te keren naar het **dialoogvenster Schaal toepassingsmethode**.

Wat zijn Automatische bereiken?

Als de functie **Automatische bereiken** wordt geselecteerd, dan controleert PicoScope voortdurend het ingangssignaal en past het bereik aan wanneer dit nodig is om het signaal met maximale resolutie weer te geven. Deze functie is beschikbaar op alle standaardbereiken en kan worden gebruikt met aangepaste bereiken alleen als u **Laat de software mijn bereiken automatisch beheren** selecteert in dit dialoogvenster.
6.5.1.6 Dialoogvenster Handmatig bereiken instellen

Locatie: Dialoogvenster Bereikenbeheer > Geavanceerd > Volgende
Doel: hier kunt u handmatig bereiken instellen voor uw aangepaste probe

Het gebruik van het dialoogvenster
Als u dit wenst, kunt u klikken op Automatisch bereiken genereren en het programma zal een aantal bereiken maken voor het geselecteerde apparaat. Dit zal dezelfde lijst bereiken zijn die u zou hebben verkregen door Laat de software mijn bereiken automatisch beheren te selecteren in het vorige dialoogvenster. Wanneer u een bereik selecteert, zal een diagram onder de lijst de verhouding ten opzichte van het ingangsbereik van het apparaat tonen. Dit wordt verder uitgelegd onder dialoogvenster Bereik bewerken. U kunt vervolgens de bereiken bewerken door te klikken op Bewerken, of u kunt een nieuw bereik toevoegen door te klikken op Nieuw bereik. Beide van deze knoppen voeren u naar het dialoogvenster Bewerk bereik.

Klik op Volgende om verder te gaan naar het dialoogvenster Schaal toepassingsmethode.

Klik op volgende om verder te gaan naar het dialoogvenster Filtermethode.

Een nieuw aangepast bereik gebruiken
Nadat u een aangepast bereik hebt gemaakt, wordt dit weergegeven in de vervolgekeuzelijst van bereiken in de werk balk Kanalen, als volgt:
6.5.1.1.6.1 Dialogoogvenster Bewerk bereik

Locatie:
Dialogoogvenster Handmatig bereik instellen > Bewerken of Nieuw bereik

Doel:
hier kunt u een handmatig bereik bewerken voor een aangepaste probe

Automatische modus

Als u de radioknop "Automatisch" ingeschakeld laat, zal het programma automatisch het beste ingangsbereik bepalen voor het apparaat terwijl u de Schaalverdeling grensbereik verandert. Dit is de beste modus voor bijna alle bereiken. U moet de Schaalverdeling grensbereik instellen op de maximale en minimale waarden die u wenst te zien op de verticale as van het scherm.

Vaste bereik modus

Als u drukt op de radioknop "Gebruik dit hardware ingangsbereik" en een ingangsbereik selecteert in de vervolgkeuzelijst, dan zal PicoScope dat ingangsbereik gebruiken ongeacht de schaalverdeling die u kiest. Stel de bovenste en onderste grensbereiken in die u wenst te tonen op de boven- en onderkant van de verticale as in het scoopgezichtspunt.

Wat is een ingangsbereik?

Een ingangsbereik is het signaalbereik, meestal in volt, op het ingangskanaal van het apparaat. Uw geschaalde bereik moet hier zo dicht mogelijk mee overeenkomen om de resolutie van uw scoop zo goed mogelijk te benutten.

Wat is een geschaald bereik?

Het geschaalde bereik is het bereik dat wordt weergegeven op de verticale as van de scoopweergave als de probe wordt geselecteerd.

De schaalverdeling die u hebt geselecteerd op de pagina Schaalverdeling toepassingsmethode definiëert de verhouding tussen het ingangsbereik en het geschaalde bereik. Met dit dialogoogvenster kunt u bereiken instellen om de geschaalde gegevens weer te gegeven op het scoopgezichtspunt.
De gebruiksbalk van het bereik

Dit diagram onderaan het dialoogvenster toont u hoe goed het ingangsbereik van het apparaat is afgestemd op het geschaald bereik.

- **Groen** - het gedeelte van het ingangsbereik dat wordt gebruikt door het geschaalde bereik. Dit moet zo groot mogelijk zijn om de resolutie van het apparaat zo goed mogelijk te benutten.

- **Blauw** - Delen van het ingangsbereik die niet worden gebruikt. Deze wijzen op verspilde resolutie.

- **Grijs** - Delen van het geschaalde bereik die niet gedekt zijn door het ingangsbereik. Dit zal resulteren in verspilde ruimte in de grafiek. De gebruiksbalk geeft mogelijk deze gebieden niet nauwkeurig weer als niet-lineaire schaalverdeling wordt gebruikt. U moet daarom altijd de grenzen van het geschaalde bereik testen op het scoopgezichtspunt.

Tabblad Geavanceerd

Voltooien

Klik op OK of Annuleren om terug te keren naar het dialogvenster Handmatig bereiken instellen.
6.5.1.6.2 Dialoogvenster Bewerk bereik (tabblad Geavanceerd)

Locatie: **Dialoogvenster Handmatig bereik instellen** > Bewerken of Nieuw bereik > Geavanceerd

Doel: hier kunt u geavanceerde opties instellen voor aangepaste probes

Deze opties zijn voor gebruik in de fabriek en we raden aan dat u deze niet wijzigt.

Voltooien

Klik op OK of Annuleren om terug te keren naar het dialoogvenster Handmatig bereiken instellen.
6.5.1.1.7 Dialoogvenster Filtermethode

Locatie: Dialoogvenster Handmatig bereiken instellen > Volgende

Doel: hier stelt u filtering met lage doorlaat in voor deze aangepaste probe

Dit dialoogvenster heeft hetzelfde effect als het handmatig inschakelen van de optie Filteren van lage doorvoer in het dialoogvenster Kanaalopties. Filteren wordt alleen uitgevoerd als het aangesloten apparaat dit ondersteunt.

Terug: Ga naar het dialoogvenster Handmatig bereiken instellen

Volgende: Ga naar het dialoogvenster Aangepaste probe identificatie
6.5.1.1.8 Dialoogvenster Aangepaste probe identificatie

Locatie: **Dialoogvenster Bereikenbeheer** > **Volgende**

Doel: hier kunt u tekst invoeren om de **aangepaste probe** te identificeren

Het gebruik van het dialoogvenster

Klik op **Terug** om terug te keren naar het dialoogvenster **Filtermethode**.

- De **naam van de probe** wordt weergegeven in de probelijst.
- De **beschrijving** wordt niet gebruikt in de huidige versie van de software.

Vul de tekstvelden in en klik op **Volgende** om verder te gaan naar het dialoogvenster **Afgewerkt**.
6.5.1.9 Dialoogvenster Aangepaste probe afgewerkt

Locatie: **Dialoogvenster Aangepaste probe identificatie** > Volgende

Doel: dit geeft het einde aan van de instelprocedure van **aangepaste probes**

Het gebruik van het dialoogvenster

Klik op Terug om terug te keren naar het dialoogvenster **Aangepaste probe identificatie**.

Klik op Voltooien om uw instellingen te accepteren en terug te keren naar het dialoogvenster **Aangepaste probes**.

6.5.2 Dialogvenster Rekenkanalen
Locatie: **Gereedschap > Rekenkanalen**

Doel: **Hier kunt u rekenkanalen maken, bewerken** en instellen ***. Dit zijn virtuele kanalen gegenereerd door wiskundige functies van ingangskanalen

![Math Channel list]

Lijst Rekenkanalen Het hoofdgebied van het dialogvenster Rekenkanalen is de **lijst met rekenkanalen**. Hier worden alle ingebouwde, bibliotheek en geladen rekenkanalen getoond. Om te kiezen om een kanaal te tonen in het hoofdvenster van PicoScope, klikt u op het desbetreffende selectievakje en vervolgens op **OK**. U kunt maximaal 8 kanalen hebben in elk gezichtspunt, ingangskanalen en rekenkanalen samen. Als u probeert om een 9 de kanaal te openen, zal PicoScope een nieuw gezichtspunt openen.

Ingebouwd: deze rekenkanalen worden gedefinieerd door PicoScope en kunnen niet worden gewijzigd

Bibliotheek: dit zijn de rekenkanalen die u definiert met behulp van de knop **Aanmaken** of **Dupliceren**. U kunt ook rekenkanalen **Bewerken** of laden met de knop **Importeren**

Geladen: dit zijn de rekenkanalen aanwezig in door u geladen configuratiebestanden of gegevensbestanden van PicoScope

Aanmaken Dit opent de **Wizard Een nieuw rekenkanaal aanmaken** die u helpt bij het maken of bewerken van een rekenkanaal. Het nieuwe kanaal wordt weergegeven onder "**Bibliotheek**" in de **lijst met rekenkanalen**.
Bewerken

Dit opent de **Math kanaal Wizard** waarmee u het geselecteerd rekenkanaal kunt bewerken. Eerst moet u een kanaal selecteren in de **Bibliotheek** van de **lijst met rekenkanalen**. Als het kanaal dat u wilt bewerken onder **Ingebouwd** of **Geladen** staat, kopieert u het eerst naar de **Bibliotheek** door te klikken op **Dupliceren**. Vervolgens kunt u het selecteren en klikken op **Bewerken**.

Verwijderen

Hiermee wist u het geselecteerde rekenkanaal permanent. Alleen rekenkanalen onder **Bibliotheek** kunnen worden verwijderd.

Dupliceren

Hiermee maakt u een kopie van het geselecteerde rekenkanaal. De kopie wordt geplaatst onder **Bibliotheek**, waar u deze kunt bewerken door te klikken op **Bewerken**.

Importeren

Hiermee opent u een **.psmaths** rekenkanaalbestand en plaatst de rekenkanalen erin in de **Bibliotheek**.

Exporteren

Dit slaat alle rekenkanalen van de **Bibliotheek** op naar een nieuw **.psmaths**-bestand.
6.5.2.1 Wizard Math kanaal

Locatie: **Werkbalk kanaalinstellingen** > knop Rekenkanalen

Doel: hier kunt u rekenkanalen maken, bewerken en instellen. Dit zijn virtuele kanalen gegenereerd door wiskundige functies van ingangskanalen

1. **Inleiding**

2. **Vergelijking**

3. **Kanaalnaam**

4. **Eenheden en bereik**

5. **Voltooid**
6.5.2.1.1 Math kanaal Wizard introductiediaolooogvenster

Locatie: Dialogvenster Rekenkanalen > Aanmaken (als u het selectievakje 'Deze introductiepagina niet opnieuw tonen' niet hebt ingeschakeld)

Doel: introduceert de Math kanaal Wizard
6.5.2.1.2 Math kanaal Wizard dialoogvenster Vergelijking

Locatie: **Math kanaal Wizard**

Doel: hiermee kunt u de vergelijking voor een rekenkanaal invoeren of bewerken. U kunt rechtstreeks in het vak typen of op de knoppen van het programma klikken en de symbolen voor u laten invoegen. Er zal een rode foutindicator \(\times \) verschijnen aan de rechterkant van de vergelijking als deze een syntaxisfout bevat.

Basisweergave

![Math kanaal Wizard dialoogvenster Vergelijking, basisweergave](image)

Basisknoppen

<table>
<thead>
<tr>
<th>Knop</th>
<th>Vergelijking</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE</td>
<td></td>
<td>Vergelijking verwijderen. hiermee wist u heel de vergelijking.</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>Wissen. Hiermee wist u het teken links van de cursor.</td>
</tr>
<tr>
<td>+</td>
<td></td>
<td>Optellen:</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td>Aftrekken (of negatief maken)</td>
</tr>
<tr>
<td>*</td>
<td></td>
<td>Vermenigvuldigen</td>
</tr>
<tr>
<td>/</td>
<td></td>
<td>Delen</td>
</tr>
<tr>
<td>A...D</td>
<td></td>
<td>Ingangskanalen. Het aantal knoppen is afhankelijk van het aantal kanalen op uw oscilloscoop.</td>
</tr>
<tr>
<td>(...)</td>
<td></td>
<td>Andere operanden. Toont een vervolgkeuzelijst met beschikbare ingangen voor vergelijkingen, met inbegrip van referentiegolfvormen en tijd.</td>
</tr>
<tr>
<td>(...)</td>
<td></td>
<td>Haken. Expressies tussen haken worden geëvalueerd vóór de expressies aan beide zijden.</td>
</tr>
</tbody>
</table>
Geavanceerd

Klik op de knop Geavanceerd om nog meer functieknoppen weer te geven, inclusief goniometrische functies en logaritmen.

![Math kanaal Wizard dialoogvenster Vergelijking, geavanceerde weergave](image)

Geavanceerde knoppen

<table>
<thead>
<tr>
<th>Knop</th>
<th>Vergelijking</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>sqrt</td>
<td>sqrt()</td>
<td>Vierkantswortel</td>
</tr>
<tr>
<td>^</td>
<td>^</td>
<td>Macht. Verhoog x tot de macht van y.</td>
</tr>
<tr>
<td>ln</td>
<td>ln()</td>
<td>Natuurlijk logaritme</td>
</tr>
<tr>
<td>abs</td>
<td>abs()</td>
<td>Absolute waarde</td>
</tr>
<tr>
<td>freq</td>
<td>freq()</td>
<td>Frequentie. Berekend in hertz.</td>
</tr>
<tr>
<td>norm</td>
<td>norm()</td>
<td>Normaliseren. PicoScope berekent de maximale en minimale waarden van het argument over de vastleggingsperiode en stelt vervolgens de schaalverdeling en offsets in zodat het argument precies past in het bereik [0, + 1].</td>
</tr>
<tr>
<td>e^x</td>
<td>exp()</td>
<td>Natuurlijke exponent. Verhoog e, het grondtal voor het natuurlijke logaritme, tot de macht van x.</td>
</tr>
<tr>
<td>log</td>
<td>log()</td>
<td>Logaritme. Logaritme met grondtal 10.</td>
</tr>
<tr>
<td></td>
<td>integral()</td>
<td>Integraal. Langs de x-as.</td>
</tr>
</tbody>
</table>
min() \textbf{Minimum.} Negatieve piek detecteren van alle vorige golfvormen.

max() \textbf{Maximum.} Positieve piek detecteren van alle vorige golfvormen.

average() \textbf{Gemiddelde.} Rekenkundig gemiddelde van alle vorige golfvormen.

peak() \textbf{Piek detecteren.} Maximum-naar-minimum bereik weergeven van alle vorige golfvormen.

\(\pi\) \textbf{Pi.} De verhouding van de omtrek van een cirkel tot zijn diameter.

\textbf{Omkeren.} Hiermee wijzigt u de \textit{sin}, \textit{cos} en \textit{tan}-knoppen in \textit{asin}, \textit{acos} en \textit{atan}.

\textbf{Sinus.} De operand is in radiaalen.

\textbf{Cosinus.} De operand is in radiaalen.

\textbf{Tangens.} De operand is in radiaalen.

0..9 \textbf{0 tot 9.} De decimale cijfers.

. \textbf{Decimaalteken}

E \textbf{Exponent.} aE^b betekent \(a \times 10^b\).

\begin{itemize}
\item \textbf{Extra functies}
\end{itemize}

Er zijn een aantal functies die alleen met behulp van het vak kunnen worden ingevoerd.

\textbf{Hyperbolische functies.} U kunt de operators \textit{sinh()}, \textit{cosh()} en \textit{tanh()} invoeren om hyperbolische functies te verkrijgen.

\textbf{Signumfunctie.} De operator \textit{sign()} geeft als resultaat het teken van de ingang. Het resultaat is +1 als de ingang positief is, -1 als de ingang negatief is en 0 als de ingang 0 is.

\textbf{Versnelling/vertraging.} Voeg \([t]\) toe na de naam van een kanaal om het met \(t\) seconden te versnellen. Bijvoorbeeld \textit{A[0,001]} is gelijk aan Kanaal A versneld met 1 milliseconde, en \textit{A[-0,001]} is gelijk aan Kanaal A vertraagd met 1 milliseconde.
6.5.2.1.3 Math kanaal Wizard dialoogvenster Naam

Locatie: **Maths kanaal Wizard**

Doel: hier kunt u de naam en de kleur van een rekenkanaal invoeren of bewerken

PicoScope stelt aanvankelijk de naam in als de tekst van de vergelijking, maar kunt u deze bewerken in een naam van uw keuze. De naam wordt weergegeven in de lijst met kanalen in het dialoogvenster Rekenkanalen. U kunt de kleur van het trace instellen op een van de standaardkleuren uit de vervolgkeuzelijst of klikken op Aangepast om elke mogelijke kleur te kiezen die is toegestaan in Windows.
6.5.2.1.4 Math kanaal Wizard dialoogvenster Eenheden en bereik

Locatie: **Math kanaal Wizard**

Doel: hier kunt u de maateenheden en het bereik van de waarden voor een rekenkanaal opgeven

Eenheden, Lange naam: Dit is alleen voor uw referentie.

Eenheden, Korte naam: Dit wordt weergegeven op de meetas in *scoop-* en *spectrum-* gezichtspunt, in de *liniaallegenda* en in de *tabel met metingen*.

Bereik: Als u dit selectievakje niet inschakelt, zal PicoScope het meest geschikte bereik kiezen voor de meetas. Als u liever uw eigen waarden instelt voor de minimale en maximale uitersten van de meetas, schakel dan het selectievakje in en voer ze in in de vakken *Min* en *Max.*
6.5.2.1.5 Math kanaal Wizard dialoogvenster Voltooid

Locatie: Math kanaal Wizard

Doel: dit toont u de instellingen voor het rekenkanaal die u net hebt gemaakt of bewerkt

Terug. Klik op deze knop om terug te keren naar vorige dialoogvensters in de Mats kanaal Wizard als u een van de instellingen wenst te wijzigen.

Dialoogvenster Referentiegolfvormen

Locatie: **Gereedschap > Referentiegolfvormen**

Doel: Hiermee kunt u referentiegolfvormen maken, bewerken en instellen. Dit zijn opgeslagen kopieën van ingangskanalen.

Het belangrijkste deel van het dialoogvenster **Referentiegolfvormen** is de **lijst met referentiegolfvormen**. Deze lijst toont alle beschikbare ingangskanalen en de bibliotheek- en geladen referentiegolfvormen. Om te kiezen om een golfvorm te tonen in het hoofdvenster van PicoScope, klikt u op het desbetreffende selectievakje en vervolgens op **OK**. U kunt maximaal 8 kanalen hebben in elk gezichtspunt, inclusief ingangskanalen, rekenkanalen en referentiegolfvormen. Als u probeert om een 9 de kanaal te openen, zal PicoScope een nieuw gezichtspunt openen.

Available: deze ingangskanalen zijn geschikt als bronnen voor referentiegolfvormen.

Library: Dit zijn de referentiegolfvormen die u hebt gedefinieerd met behulp van de knop **Dupliceren** of die u hebt geladen met de knop **Importeren**.

Loaded: dit zijn de referentiegolfvormen aanwezig in door u geladen configuratiebestanden of gegevensbestanden van PicoScope.

Bewerken: Dit opent het dialoogvenster **Referentiegolfvormen bewerken** waar u de geselecteerde referentiegolfvormen kunt bewerken. Eerst moet u een golfvorm selecteren uit het gedeelte **Library** van de lijst met referentiegolfvormen. Als u een referentiegolfvorm wilt bewerken, klikt u op **Edit** in de **Library** of **Loaded** gedeelte. De golfvorm wordt dan in een eigen dialoogvenster geopend, waar u de gewenste bewerking kunt uitvoeren.
Verwijderen Hiermee wist u de geselecteerde referentiegolfvorm permanent. Alleen referentiegolfvormen onder **Library** kunnen worden verwijderd.

Dupliceren Hiermee maakt u een kopie van het geselecteerde ingangskanaal of referentiegolfvorm. De kopie wordt geplaatst onder **Library**, van waar u deze kunt bewerken door te klikken op **Bewerken**. Een snellere manier om hetzelfde te doen is door te klikken met de rechtermuisknop op het gezichtspunt, **Referentiegolfvormen** te selecteren en vervolgens te klikken op het kanaal dat u wilt kopiëren.

Importeren Hiermee opent u een **.psreference**-referentiegolfvormbestand en plaatst u de golfvormen erin in het gedeelte **Library**.

Exporteren Hiermee slaat u alle referentiegolfvormen uit het gedeelte **Library** op naar een nieuw **.psreference** of MATLAB 4 **.mat**- bestand.

6.5.3.1 Dialoogvenster Referentiegolfvorm bewerken

Locatie: **Dialoogvenster Referentiegolfvorm** > **Bewerken**

Doel: hier kunt u de naam en kleur van een **referentiegolfvorm** veranderen

Naam. PicoScope benoemt de golfvorm eerst naar het ingangskanaal dat werd gebruikt als bron, maar kunt u deze naam veranderen in wat u wil. Hier hebben we het "sinus" genoemd. De naam zal verschijnen in de lijst met golfvormen in het **dialoogvenster referentiegolfvormen**.

Kleur: U kunt de kleur van het trace instellen op een van de standaardkleuren uit de vervolgeuzelijst of klikken op **Aangepast** om een kleur te kiezen die is toegestaan in Windows.
6.5.4 Dialoogvenster Seriële decodering
Locatie: **Gereedschap > Seriële decodering**
Doel: hier kunt u kiezen welke kanalen te gebruiken voor **seriële decodering** en andere opties instellen
6.5.5 Dialoogvenster Alarmen
Locatie: **Gereedschap > Alarmen**

Doel: dit geeft toegang tot de alarmfunctie, waarmee acties worden opgegeven om uit te voeren bij verschillende gebeurtenissen.

Gebeurtenis: selecteer hier de gebeurtenis die het alarm zal activeren:

- **Opnemen:** wanneer een golfvorm wordt vastgelegd. Als **activering** is ingeschakeld, zal deze optie overeenkomen met een activeringsgebeurtenis. U kunt deze functie daarom gebruiken om een bestand op te slaan bij elke activeringsgebeurtenis.
- **Buffers vol:** wanneer het aantal golfvormen in de **golfvormbuffer** het **maximale aantal golfvormen** bereikt.
- **Masker(s) fout:** wanneer een kanaal niet slaagt in een **maskertest**.

(Lijst van acties): voeg een actie aan deze lijst toe door te klikken op **Toevoegen**. Als de opgegeven gebeurtenis zich voordoet, zal PicoScope alle acties in de lijst uitvoeren van boven naar beneden.

OPMERKING: om een actie uit te voeren, moet het selectievakje ingeschakeld zijn.

Toepassen: stel de oscilloscoop in op de instellingen in dit dialoogvenster.
Toevoegen: voeg een gebeurtenis toe aan de lijst met acties. Mogelijke gebeurtenissen zijn:

Biep: activeer het ingebouwde geluidssignaal van de computer. 64-bit computers leiden dit geluid om naar de oortelefoon-uitgang.

Geluid afspelen: geef de naam op van een .wav-geluidsbestand om af te spelen.

Opname stopzetten: hetzelfde als drukken op de rode Stop-knop.

Opname opnieuw starten: hetzelfde als drukken op de groene Start-knop. Gebruik dit alleen als de actie Opname stopzetten eerder in de lijst werd gebruikt.

Uitvoerbaar bestand afspelen: voer het opgegeven EXE-, COM- of BAT-bestand. U kunt variabele %file% invoeren na de naam van het programma om de naam van het laatst opgeslagen bestand door te geven als een argument aan het programma. PicoScope zal stoppen met vastleggen zolang het programma loopt, en hervatten nadat het programma is beëindigd.

Huidige Buffer opslaan: sla de huidige golfvorm van de buffer op als een .psdata-, .pssettings-, CSV- of .mat-bestand. U kunt de variabele %buffer% gebruiken om het buffer-indexnummer in te voegen in de bestandsnaam, of de variabele %time% om het moment van de opname in te voegen.

Alle Buffers opslaan: sla de volledige golfvorm-buffer op als een .psdata-, .pssettings-, .csv- of .mat-bestand.
6.5.6 Menu Maskers
Locatie: Gereedschap > Maskers
Doel: hiermee stelt u maskerlimiettesten in

Maskers toevoegen: voeg een masker toe aan het gezichtspunt met het dialoogvenster Maskerbibliotheek.
Masker wissen: verwijder het masker uit het gezichtspunt.
Masker opslaan: sla het weergeven masker op naar de schijf als een .mask-bestand.
6.5.6.1 Dialoogvenster Maskerbibliotheek

Locatie: **Gereedschap > Maskers**

Doel: hier kunt u maskers maken, exporteren en importeren voor **maskerlimiettesten**

Kanaal: selecteer het kanaal dat u wilt toepassen op het masker.

Beschikbare maskers: onder Library worden alle maskers getoond die u in het verleden hebt opgeslagen en die u niet hebt verwijderd. Onder Loaded worden alle maskers getoond die momenteel in gebruik zijn.

Genereren: hiermee maakt u een nieuw masker aan op basis van de laatste golfvorm vastgelegd van het geselecteerde kanaal. Dit opent het dialoogvenster **voor het maken van maskers**.

Importeren: laad een masker dat eerder werd opgeslagen als een .mask-bestand.

Exporteren: sla een masker op als een .mask-bestand voor toekomstige import.

Toepassen: gebruik het geselecteerde masker op het geselecteerde kanaal zonder het dialoogvenster Maskerbibliotheek te verlaten.

OK: gebruik het geselecteerde masker op het geselecteerde kanaal en keer terug naar het **scoopgezichtspunt**.
6.5.6.2 Een masker bewerken

Om een masker te bewerken in de modus maskerlimiettesten, klikt u met de rechtermuisknop op het scoopgezichtspunt en selecteert u **Masker bewerken**:

![Masker bewerken](image)

Een masker is samengesteld uit een of meer vormen die **polygonen** worden genoemd. Klik op de polygoon die u wilt bewerken. PicoScope zal vervolgens bewerkingsknoppen weergeven op het geselecteerde maskerpolygoon en het vak Masker bewerken weergeven. Als u een van de knoppen verslept om de polygoon te verwerken, dan zullen de statistische resultaten onmiddellijk worden bijgewerkt.

Het vak Masker bewerken ziet er als volgt uit:

![Masker bewerken](image)

Als het bewerkingsvak niet onmiddellijk zichtbaar is, kan het geminimaliseerd zijn. Klik in dat geval u op de knop herstellen: ![herstellen](image). Als u de coördinaten van een hoekpunt bewerkt, worden de statistische resultaten onmiddellijk bijgewerkt. U kunt ook het masker exporteren naar een **.mask**-bestand met de knop exporteren: ![exporteren](image). Gebruik de + en - knoppen om hoekpunten toe te voegen of te verwijderen. De knop Minimaliseren heeft zijn gebruikelijke functie. Om de bewerkingsmodus te verlaten sluit u het vak met de sluiten (X) knop.

Om een volledige polygoon toe te voegen of te verwijderen, klikt u met de rechtermuisknop op het scoopgezichtspunt en selecteert u **Maskerpolygoon toevoegen** of **Maskerpolygoon verwijderen**:

![Maskerpolygoon](image)
6.5.6.3 Dialoogvenster Masker genereren

Locatie: **Dialoogvenster Maskerbibliotheek** > **Genereren**

Doel: hier kunt u parameters instellen voor het automatisch gegenereerde masker. PicoScope maakt vervolgens een nieuw masker op basis van de laatst vastgelegde golfvorm.

Naam: PicoScope kiest automatisch een naam voor het nieuwe masker. U kunt de naam in dit vak bewerken.

X-offset: de horizontale afstand tussen de golfvorm en het masker.

[Switch button] Met deze knop schakelt u de offsetwaarde om tussen absolute eenheden (SI) en relatieve eenheden (% van volledige schaal).

[Reset button] Met deze knop herstelt u de offsetwaarde naar de standaardinstelling.

Y-offset: de verticale afstand tussen de golfvorm en het masker.
6.5.7 Macrorecorder
Locatie: **Gereedschap** > **Macrorecorder**

Doel: hiermee neemt u een reeks opdrachten op om later af te spelen

De Macrorecorder helpt u als u een reeks opdrachten herhaaldelijk wenst uit te voeren. Het slaat alle opdrachten op in een .psmacro-bestand. Dit bestand kan worden gewijzigd met behulp van een XML-editor.

In real-time uitvoeren: speel de macro af met dezelfde snelheid als wanneer opgenomen. Zonder deze optie, zal het afspelen zo snel mogelijk worden uitgevoerd.

Opmerking: .psmacro-bestanden kunnen ook worden afgespeeld vanaf de PicoScope-opdrachtregel.
6.5.8 Dialoogvenster Voorkeuren

Locatie: **Gereedschap > Voorkeuren**

Doel: hiermee kunt u opties instellen voor de PicoScope-software. Klik op een van de tabbladen in de afbeelding hieronder voor meer informatie.
6.5.8.1 Pagina Algemeen

Locatie: **Gereedschap > Voorkeuren > Algemeen**

Doel: dit bevat algemene instellingen voor PicoScope

Herstel 'Niet meer weergeven' dialoogvensters
Hiermee herstelt u eventueel ontbrekende dialoogvensters waarvoor u aan PicoScope hebt gevraagd om deze niet weer te geven.

Herstel de standaard voorkeuren
Hiermee worden alle voorkeursinstellingen teruggezet op hun standaardwaarden.

Golfvormbuffer

Maximum aantal golfvormen: Dit is het maximum aantal golfvormen die PicoScope zal opslagen in de golfvormbuffer. U kunt een aantal selecteren van 1 tot het maximum toegestaan door de aangesloten oscilloscoop: zie specificaties van het apparaat voor meer details). Het werkelijke aantal opgeslagen golfvormen is afhankelijk van het beschikbare geheugen en het aantal monsters in elke golfvorm.

Verzameltijd eenheden
Wijzig de modus van de **Tijdbasis** in de werk balk Vastleggingsinstellingen.

Tijd per divisie: de **tijdbasis** geeft tijdeenheden weer per divisie - bijvoorbeeld '5 ns /div'. De meeste laboratoriumoscilloscopen geven de tijdbasis op deze manier weer.

De totale verzameltijd: de **tijdbasis** geeft tijdseenheden weer voor de volledige breedte van het scooppunt - bijvoorbeeld '50 ns'.

Statistieken v/d meting

Statistieken golfvormen - het aantal opeenvolgende vastleggingen dat PicoScope gebruikt om de statistieken te berekenen in de tabel met metingen. Een groter aantal produceert meer nauwkeurige statistieken, maar zorgt ervoor dat ze minder vaak worden bijgewerkt.
6.5.8.2 Pagina Energiebeheer

Locatie: **Gereedschap > Voorkeuren > Energiebeheer**

Doel: hierstelt u kenmerken van de oscilloscoop in die een invloed hebben op het stroomverbruik

Bemonsteringsnelheid

Hiermee wordt de snelheid beperkt waarmee PicoScope gegevens verzamelt uit de oscilloscoop. De andere PicoScope-instellingen, het soort **apparaat** en de snelheid van de computer zal bepalen of deze limiet daadwerkelijk kan worden bereikt. PicoScope selecteert automatisch de juiste limiet, afhankelijk van uw computer op batterijen of op de netvoeding draait.

De instellingen zijn in golfvormen per seconde. Standaard is de bemonsteringssnelheid ingesteld op "Onbeperkt" als uw computer aangesloten is op het **Lichtnet** (netvoeding), voor maximale prestaties. Als andere toepassingen op uw PC te langzaam gaan terwijl PicoScope aan het vastleggen is, dan moet u de bemonsteringssnelheid verlagen. Als uw computer werkt op **Batterij** stroom, dan legt PicoScope een prestatielimiet op om de batterij te sparen. U kunt deze limiet handmatig verhogen, maar dit zal ertoe leiden dat de batterij heel snel leegloopt.
6.5.8.3 Pagina bemonstering
Locatie: **Gereedschap > Voorkeuren > Bemonstering**

Doel: hiermee bepaalt u het gedrag van de bemonstering van de oscilloscoop

Trage bemonsteringsovergang
In de normale (snelle) bemonsteringsmodus, verzamelt PicoScope voldoende gegevens om het scherm te vullen en vervolgens tekent het het volledige gezichtspunt opnieuw. Deze methode is geschikt voor snelle tijdbasissen, als het scherm elke seconde vele malen opnieuw wordt getekend. Bij vertraagde tijdbasissen kan dit leiden tot een onaangenaamere vertraging voordat de gegevens worden weergegeven op het scherm. Om deze vertraging te voorkomen, schakelt PicoScope automatisch over naar de trage bemonsteringsmodus. Hierbij gaat de scooptrace geleidelijk over het scherm terwijl de oscilloscoop gegevens vastlegt.

Met de instelling **Verzameltijd** kunt u de tijdbasis selecteren waarmee PicoScope overschakelt naar de trage bemonsteringsmodus.

Display voor langzame sampling
Als dit selectievakje is ingeschakeld, dan wordt de vorige golfvorm in de buffer weergegeven terwijl de nieuwe golfvorm er geleidelijk bovenop wordt getekend. Op elk moment geeft de linkerkant van het gezichtspunt dus het begin van de nieuwe golfvorm en aan de rechterkant ziet u het einde van de vorige golfvorm. Een verticale balk scheidt de twee golfvormen.

Sin(x)/x Interpolatie
Als het aantal pixels in het scoopgezichtspunt groter is dan het aantal monsters in de golfvormbuffer, dan interpoleert PicoScope. Dit wil zeggen dat het de ruimte tussen de monsters vult met geschatte gegevens. Het kan rechte lijnen tussen de monsters trekken (lineaire interpolatie) of ze met elkaar verbinden met vloeiende curven (sin (x)/x interpolatie). Lineaire interpolatie maakt het makkelijker om te zien waar de monsters zijn, wat handig is voor metingen met hoge precisie, maar het levert wel een gekartelde golfvorm op. Sin (x)/x interpolatie geeft een soepelere golfvorm maar verhult de ware locaties van de monsters. Gebruik deze modus daarom voorzichtig als het aantal monsters op het scherm laag is.
U kunt instellen onder welk aantal monsters sin (x)/x interpolatie wordt ingeschakeld. Sin (x)/x interpolatie wordt alleen gebruikt op de snelste tijdbasis van de scoop.
6.5.8.4 Pagina Toetsenbord

Locatie: **Gereedschap > Voorkeuren > Toetsenbord**

Doel: hiermee kunt u sneltoetsen weergeven en bewerken

Een sneltoets is een toetsencombinatie die kan worden ingedrukt op het toetsenbord om een bewerking van PicoScope uit te voeren.
Sneltoetsen

Dit is een lijst van PicoScope-bewerkingen en hun bijbehorende sneltoetsen (indien gedefinieerd). De omvang van de lijst is afhankelijk van de optie **Toon het volledige overzicht met sneltoetsen** (zie hieronder).

Een sneltoets toevoegen of bewerken:
- Blader door de lijst met PicoScope-bewerkingen tot de vereiste bewerking zichtbaar is.
- Selecteer de gewenste bewerking.
- Selecteer het vak 'Druk op de sneltoetsen:'.
- Druk op de gewenste toetsencombinatie op het toetsenbord.
- Klik op Toewijzen.

Toon het volledige overzicht met sneltoetsen

Schakel dit selectievakje in als u alle beschikbare bewerkingen wenst weer te geven. Standaard worden alleen de meest voorkomende bewerkingen vermeld, plus eventuele andere bewerkingen waaraan een sneltoets is toegewezen.

Toetsenbordinstellingen

Een set sneltoetsen wordt een **instelling** genoemd. U kunt meerdere instellingen toewijzen voor verschillende toepassingen.

Default: deze instelling kan niet worden bewerkt. Gebruik het echter om terug te keren naar de standaard ingestelde basissneltoetsen.

Advanced: dit is nog een fabrieksinstelling die niet kan worden bewerkt. Het bevat een uitgebreidere set sneltoetsen.

Gebruiker: dit is de instelling die u het meest recent hebt gemaakt of geïmporteerd. Het wordt bewaard tussen PicoScope-sessies.

Importeren: laad een toetsenbordinstelling van een .pskeys-bestand.

Exporteren: sla de huidige instelling van het toetsenbord op in een .pskeys-bestand.
Locatie: **Gereedschap > Voorkeuren > Talen**

Doel: hiermee kunt u de taal en andere locatie-afhankelijke instellingen voor de gebruikersinterface van PicoScope veranderen

Taal
Selecteer uit de vervolgkeuzelijst de taal die u wenst te gebruiken voor de PicoScope 6-gebruikersinterface. PicoScope zal u vragen om het programma opnieuw te starten voordat de nieuwe taal wordt ingesteld.

Meetsysteem
Selecteer Metrische of Amerikaanse eenheden.
6.5.8.6 Pagina Bezig met Afdrukken

Locatie: **Gereedschap > Voorkeuren > Bezig met afdrukken**

Doel: hiermee kunt u de details invoeren die aan de onderkant van de afgedrukte uitvoer zal verschijnen

Standaard afdrukinstellingen

Wanneer u een gezichtspunt afdrukt vanuit het menu **Bestand**, dan worden deze gegevens toegevoegd aan de onderkant van de pagina.
6.5.8.7 Pagina Kleuren

Locatie: **Gereedschap > Voorkeuren > Kleuren**

Doel: hiermee kunt u de kleuren instellen voor verschillende onderdelen van de gebruikersinterface

Aangepaste kleuren

Met deze instellingen kunt u de kleuren opgeven voor verschillende delen van het PicoScope-scherm:

- **Kanalen**: de lijnkleur voor elk scoopkanaal
- **Digitale kanalen**: als u een *mixed-signal oscilloscoop (MBO)* hebt, dan wordt de kleur van elk kanaal hier ingesteld
- **Maskers**: de maskergebieden in *Maskerlimiettesten*
- **Diversen**: diverse items:
 - **Rasterlijnen**: de horizontale en verticale lijnen op de *raster*
 - **Achtergrond**: het gebied achter de golfvormen en de raster. (In *persistentiemodus* kunnen deze worden overschreven door het dialoogvenster *persistentie-opties*).

<table>
<thead>
<tr>
<th>Rechtstreekse trigger</th>
<th>de activeringsmarker voor de huidige positie van de activering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activering</td>
<td>secundaire activeringsmarker (verschijnt als de rechtstreekse trigger verplaatst is sinds de laatste golfvorm)</td>
</tr>
<tr>
<td>Horizontale as</td>
<td>de getallen onderaan elk gezichtspunt, Meestal zijn dit tijdmetingen</td>
</tr>
</tbody>
</table>
Linialen

de horizontale en verticale linialen die u kunt verslepen naar de gewenste positie om functies op de golfvorm te helpen meten.

Duur

de drie te gebruiken kleuren voor elk kanaal in digitale kleur persistentiemodus. De bovenste kleur wordt gebruikt voor de meest geraakte pixels, de middelste en onderste kleuren voor de minder en minst vaak geraakte pixels.

Lijndikte

Deze instellingen laten u de dikte van de lijnen opgeven die worden getekend op het scoop- en spectrum-gezichtspunt:

Kanaal

de golfvormen en spectrumlijnen voor alle scoopkanalen

Rasterlijnen

de horizontale en verticale lijnen op de raster

Merkpunten

de horizontale en verticale linialen die u kunt verslepen naar de gewenste positie om meetfuncties op de golfvorm te helpen meten.

Herstel de standaard kleuren

Hiermee stelt u alle kleur- en lijndikte-instellingen terug in op hun standaardwaarden.
6.5.8.8 Pagina Opties

Locatie: **Gereedschap > Voorkeuren > Opties**

Doel: hiermee kunt u diverse opties instellen voor de manier waarop PicoScope 6 werkt

Opstartinstellingen

Onthoud het laatst verbonden apparaat. Deze optie wordt gebruikt als PicoScope meer dan één apparaat heeft gevonden. Als het selectievakje is ingeschakeld zal PicoScope proberen hetzelfde apparaat te gebruiken dat het laatst werd gebruikt. Anders zal het eerste beschikbare apparaat worden gebruikt.

Geavanceerde functies

De geavanceerde bemonsteringsmodi zijn standaard ingeschakeld in PicoScope 6 en standaard uitgeschakeld in PicoScope 6 Automotive. Ongeacht de versie die u hebt, kunt u deze functies inschakelen of uitschakelen met behulp van de volgende opties:

Spectrum

Functies Spectrumgezichtspunt en Spectrumanalyser.

Persistentie

Digitale kleur, analoge intensiteit en aangepaste persistentie modi.

Zoomoverzicht

Dit is een venster dat verschijnt als u inzoomt, om te helpen rond grote golven te bewegen met een minimum aan klikken met de muis.

TPM

Omwentelingen per minuut, weergegeven naast hertz in de frequentielegenda.

Activeringsvertraging

De instelling tijdsvertraging in de werk balk Activering.

Snelle activering

De instelling 'Snel' in de Activeringsmodus in de werk balk Activering.

Onderste werk balk bovenaan

Recente bestanden
Het maximum aantal bestanden in het menu **Bestand > Recente bestanden**. Klik op de knop om de lijst te wissen.
6.6 Menu Help

Locatie: Help

Doel: geeft toegang tot de gebruikershandleiding van PicoScope 6 en verwante informatie

Handleiding Dit is de gebruikershandleiding met volledige informatie over het programma. Inhoudsopgave, Index en Zoeken zijn snelkoppelingen naar verschillende functies van de help-viewer.

Zoeken naar updates Maak verbinding met de website van Pico Technology website en zoek naar een nieuwere versie van de PicoScope-software. Hiervoor is een internetverbinding nodig.

Over PicoScope Toon de versienummers van de PicoScope-software en de oscilloscoop die is aangesloten.
6.7 Menu Automotive (alleen PicoScope Automotive)

Locatie: Menubalk > Automotive

Doel: dit geeft toegang tot een database van vooraf ingestelde testen

Opmerking: dit is een voorbeeld van versie R6.6.43.4 van de software. De inhoud van het menu verandert regelmatig als er nieuwe tests worden toegevoegd aan onze bibliotheek.

1. Selecteer een vooraf ingestelde test.
2. PicoScope opent een informatiepagina waarop wordt uitgelegd hoe u de oscilloscoop aansluit, de test uitvoert en de resultaten interpreteert. (Een aantal tests hebben geen informatiepagina).
3. PicoScope toont een golfvormvoorbeeld.
4. PicoScope configureert zichzelf met de nodige instellingen. In de meeste gevallen dient u alleen maar te drukken op de spatiebalk om de test te starten.
6.8 Dialoogvenster Verbinden met Apparaat

Locatie:
Bestand > Apparaat aansluiten
of sluit gewoon een nieuw apparaat aan

Doel:
as PicoScope meer dan één beschikbaar *scoop-apparaat* vindt, dan kunt u met dit dialoogvenster selecteren welk apparaat te gebruiken

Zie "**Hoe overstappen op een ander apparaat**" als u later wilt overschakelen naar een ander apparaat.

Procedure

- Wachten tot een lijst met apparaten verschijnt. Dit kan een aantal seconden duren.
- Selecteer een apparaat en klik op OK.
- PicoScope opent een *scoopgezichtspunt* voor het geselecteerde apparaat.
- Gebruik de *werkbalken* om het apparaat en het *scoopgezichtspunt* in te stellen om uw signalen weer te geven.

Demonstratiemodus

Als u PicoScope start zonder aangesloten apparaat, dan verschijnt het **dialoogvenster Verbinden met apparaat** automatisch met een *Demo* (demonstratie) apparaat als een van de opties. Dit is een virtueel apparaat dat u kunt gebruiken om te experimenteren met de functies van PicoScope. Als u het *Demo*-apparaat selecteert en klikt op OK, dan voegt PicoScope een *Demo signaalgenerator knop* toe aan de werkbalk. Gebruik deze knop om de testsignalen van uw *Demo*-apparaat in te stellen.
6.9 Bestanden converteren in Windows Explorer

U kunt PicoScope-gegevensbestanden converteren naar andere indelingen voor gebruik in andere toepassingen of naar andere vormen van gegevens voor gebruik met PicoScope.

De gemakkelijkste manier om deze conversie uit te voeren is door middel van het contextmenu in Windows Verkenner. Het contextmenu is het menu dat verschijnt als u met de rechtermuisknop op het bestand klikt of het menu activeert met de "menu"-knop op een Windows-toetsenbord. Wanneer u PicoScope installeert, wordt de opdracht "Converteren" toegevoegd aan het contextmenu om u de mogelijkheid te geven gegevensbestanden van PicoScope te converteren.

![Het PicoScope-contextmenu in Windows Verkenner](image)

Converteren naar PicoScope 6.2.4-indeling

- Als PicoScope is opgestart dient u het eerst te sluiten.
- In Windows Verkenner, klikt u met de rechtermuisknop op een gegevensbestand van PicoScope.
- Selecteer Converteren > Alle golvenormen > .psdata. Er verschijnt een pictogram van PicoScope in het systeemvak van Windows tijdens het uitvoeren van de conversie.
- PicoScope zal u vragen of u bevestigt dat u het .psdata-bestand wenst over te schrijven met een nieuwe versie. Klik op Ja.
- Wacht tot Windows Verkenner het scherm bijwerkt.
- Herhaal dit voor alle .psdata-bestanden.
De .psdata-bestanden zouden er nu als volgt moeten uitzien:

![Image]

Converteren naar andere indelingen

Voor al deze conversies kunt u kiezen uit "Alle golfvormen" of "Huidige golfvorm". Een .psdata-bestand kan een enkele golfvorm bevatten of de gehele inhoud van de golfvormbuffer, met een aantal golfvormen uit opeenvolgende activeringsgbeurtenissen. Als het .psdata-bestand meer dan één golfvorm bevat, dan kunt ervoor kiezen om ze allemaal te converteren of alleen de golfvorm die het laatst werd bekeken in PicoScope.

- Klik met de rechtermuisknop op een PicoScope-gegevensbestand.
- Om alle golfvormen in het bestand te converteren, selecteert u **Converteren > Alle golfvormen** of **Converteren > Huidige golfvorm** en de gewenste bestandsindeling. Er zal een PicoScope-pictogram verschijnen in het systeemvak van Windows tijdens het uitvoeren van de conversie.

Complexe bewerkingen

Voor meer complexe bewerkingen zoals het converteren van alle bestanden in een map, kunt u PicoScope uitvoeren in een opdrachtvenster (Zie [Opdrachtregegsyntaxis](#)).
7 Werk balken en knoppen

Een werkbalk is een verzameling knoppen en besturingselementen met verwante functies. PicoScope 6 bevat de volgende werkbalken:

- Buffernavigatiewerkbalk
- Werkbalk voor kanaalinstellingen
- Metingen-werkbalk
- Werkbalk voor vastleggingsinstellingen
- Start / Stop-werkbalk
- Activering-werkbalk
- Werkbalk voor zoomen en scrollen
- Signaalgeneratorknop

7.1 Werkbalk Kanalen

De Wer kbalk kanalen beheert de instellingen voor elk verticaal ingangs kanaal. Het onderstaande screenshot toont de werkbalk voor een oscilloscoop met twee kanalen, maar andere oscilloscopen kunnen een verschillend aantal kanalen hebben. (Zie ook PicoLog 1216 werkbalk gebruikt voor de PicoLog 1000-serie.)

Elk kanaal heeft zijn eigen set knoppen:

- **Menu Kanaalopties.** Hiermee opent u het menu Kanaalopties met opties voor probes, resolutieverbetering, schaalverdeling en filters.

- **Bereikinstelling.** Hiermee wordt de oscilloscoop ingesteld om signalen vast te leggen over het opgegeven bereik van waarden. De lijst met opties is afhankelijk van het geselecteerde apparaat en de probe. Een rood waarschuwingsymbool - ! - verschijnt als het ingangssignaal het geselecteerde bereik overschrijdt. Als u Auto selecteert, dan zal PicoScope voortdurend de verticale schaal aanpassen zodat de hoogte van de golfvorm zoveel mogelijk van het scherm vult.

- **Koppeling.** Stelt het ingangscircuit in.
 - AC-koppeling: weigert frequenties onder ongeveer 1 Hz.
 - DC-koppeling: accepteert alle frequenties van DC tot de maximale bandbreedte van de oscilloscoop.
 - 50Ω DC: lage-impedantie optie (zie tabel met apparaateigenschappen).
 - Accelerometer: schakelt de stroombronuitgang in voor oscilloscopen geschikt voor IEPE zoals de PicoScope 4224 IEPE. De gebruikershandleiding voor de oscilloscoop heeft details van de IEPE-kanaalspecificaties.
 - Frequentie: schakelt de ingebouwde frequentieteller in, indien beschikbaar. In deze modus kan slechts één kanaal tegelijkertijd worden bediend. Zie voor beschikbaarheid de Apparaateigenschappen.

- **Knop digitale ingangen** (alleen MSOs).
7.1.1 Menu Kanaalopties

Het menu Kanaalopties wordt weergegeven wanneer u klikt u op de knop voor Kanaalopties (bijvoorbeeld: 🔄) op de Kanalen-werkbalk.

Probe-lijst. Geeft de probe die momenteel wordt gebruikt en laat u toe een andere te selecteren. Gebruik dit om PicoScope te vertellen wat voor type probe is aangesloten op een kanaal. De standaardinstelling voor de probe is x 1. Dit betekent dat een signaal van één volt op de ingang naar de probe wordt weergegeven als één volt op het scherm.

Probe-lijst uitvouwen. Klik hierop om te selecteren uit een lijst met probes.

Open het dialoogvenster Aangepaste onderzoeken. In het dialoogvenster Aangepaste onderzoeken kunt u uw bibliotheek met aangepaste probes aanpassen.

Resolutie verbeteren. Hiermee kunt u de effectieve resolutie van uw oscilloscoop verhogen door Resolutie verbeteren. Het getal in dit vak is een streefwaarde die de software zal proberen te gebruiken waar mogelijk.
Schaalverdeling assen. Dit zijn de instellingen voor schaalverdeling van de assen waarmee u de schaal en offset voor elke verticale as individueel kunt instellen.

Analoge opties. Dit zijn opties die kunnen worden toegepast op de invoerhardware van de oscilloscoop, als de hardware dit ondersteunt.

DC-offset: een offsetspanning toegevoegd aan de analoge ingang voorafgaand aan digitalisering. Zie voor beschikbaarheid de tabel met Apparaateigenschappen.

Bandbreedtelimiet: een enkelpolige analoge filter met een vaste frequentie. Dit is nuttig voor het verwerpen van ruis en harmonischen die anders aliasing kunnen veroorzaken. Zie voor beschikbaarheid de tabel met Apparaateigenschappen.

Filteren van lage doorvoer. Een onafhankelijke digitale laagdoorvoerfilter voor elk ingangskanaal, met programmeerbare frequentielimiet. Dit kan nuttig zijn voor het verwijderen van ruis uit uw signaal om meer nauwkeurige metingen te maken. Zie voor beschikbaarheid de tabel met Apparaateigenschappen.

Nul-offset. Hiermee verwijdert u digitaal elke offset van het ingangskanaal. Voordat u deze bewerking begint, dient u elk ingangssignaal te verwijderen uit het geselecteerde kanaal en de ingang te kortsluiten. Klik op **Nul** om te beginnen met de afstelling. Klik op **Wissen** om te ingang terug te stellen op diens oorspronkelijk toestand.
7.1.1.1 Resolutie verbeteren

Resolutie verbeteren is een techniek voor het verhogen van de effectieve verticale resolutie van de scoop ten koste van details met hoge frequentie. Het selecteren van een resolutieverbetering verandert de bemonsteringssnelheid van de scoop niet, maar in sommige werkingsmodi kan PicoScope het aantal beschikbare monsters verlagen om de weergaveprestaties te behouden.

Voor de werking van deze techniek moet het signaal een zeer kleine hoeveelheid Gaussisch ruis bevatten. Voor veel praktische toepassingen wordt dit over het algemeen door de scoop zelf en de ruis inherent aan normale signalen geleverd.

De functie voor de resolutieverbetering gebruikt een vlakke filter met voortschrijdend gemiddelde. Deze werkt als een laagdoorlaatfilter met goede fasereactie en een zeer langzame demping van de doorlaatband naar de stopband.

Er kunnen enkele bijwerkingen optreden bij het gebruik van de resolutieverbetering. Deze zijn normaal en kunnen worden tegengewerkt door de verbetering te verlagen, het aantal monsters te verhogen of de tijdbasis te wijzigen. Probeer het uit om de optimale resolutieverbetering te vinden voor uw toepassing. De bijwerkingen zijn:

- Uitleopende en afgevlakte impulsen (uitschieters)
- Verticale flanken (zoals die van vierkante golven) omgezet in rechte hellingen
- Inversie van het signaal (waardoor het soms lijkt alsof het activeringspunt op de verkeerde flank staat)
- Een platte lijn (als er niet voldoende monsters zijn in de golfvorm)

Procedure

- Klik op de knop Kanaalopties in de werkbalk voor kanaalinstellingen.
- Gebruik de instellingen Resolutie verbeteren in het menu Geavanceerde opties om het effectieve aantal bits te selecteren. Dit kan groter dan of gelijk zijn aan de verticale resolutie van uw apparaat.

Kwantificering van de resolutieverbetering

De onderstaande tabel toont de grootte van de voortschrijdend-gemiddelde-filter voor elke instelling van de resolutieverbetering. Een grotere filter vereist een hogere bemonsteringssnelheid om een bepaald signaal te representeren zonder significante bijwerkingen (zoals hierboven).

<table>
<thead>
<tr>
<th>Resolutieverbetering (bits)</th>
<th>Aantal waarden n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>2</td>
</tr>
<tr>
<td>1,0</td>
<td>4</td>
</tr>
<tr>
<td>1,5</td>
<td>8</td>
</tr>
<tr>
<td>2,0</td>
<td>16</td>
</tr>
<tr>
<td>2,5</td>
<td>32</td>
</tr>
<tr>
<td>3,0</td>
<td>64</td>
</tr>
<tr>
<td>3,5</td>
<td>128</td>
</tr>
<tr>
<td>4,0</td>
<td>256</td>
</tr>
</tbody>
</table>
Voorbeeld. Uw scoop is een PicoScope 5204 (resolutie = 8 bits). U hebt een effectieve resolutie van 9,5 bits gekozen. De resolutieverbetering is daarom:

\[e = 9,5 - 8,0 = 1,5 \text{ bits} \]

De tabel laat zien dat dit wordt bereikt met behulp van een voortschrijdend gemiddelde van:

\[n = 8 \text{ monsters} \]

Dit getal geeft een leidraad voor het soort filtereffect dat de resolutieverbetering zal hebben op het signaal. De beste manier om het werkelijke effect van de laagdoorlaatfilter te zien is door een spectrumgezichtspunt toe te voegen en te kijken naar de vorm van de ruisdrempel (probeer de y-as naar boven te slepen om de ruis duidelijker te zien).

Verwante onderwerpen

Zie [Hardwareresolutie](#) (alleen van toepassing op oscilloscopen met flexibele resolutie).
7.1.1.2 Instellingen voor schaalverdeling van assen

De **instellingen voor de schaalverdeling van de assen** zijn vakjes waarin u de schaalverdeling en offset van elke verticale as individueel kunt instellen. Als de as tot een referentiegolfvorm behoort, dan kunt u ook de vertraging instellen ten opzichte van de live golfvormen.

Instellingen voor een live golfvorm

Er zijn twee manieren om de instellingen voor schaalverdeling van de assen te openen:

- Voor elk kanaal weergegeven in een gezichtspunt: klik op de gekleurde schaalknop onderaan de verticale as.
- Voor een ingangskanaal: klik op de knop voor Kanaalopties in de werkbalk Kanalen.

Instelling schaalverdeling. Verhoog de waarde om de golfvorm te vergroten, verklein de waarde om de golfvorm te verkleinen. De grootte van de verticale as verandert dienovereenkomstig zodat u altijd de correcte spanning kunt lezen van de as. Klik op de reset-knop om terug te keren naar een schaal van 1.0. De schaalverdelingknop toont altijd de geselecteerde schaal.

Offset-instelling. Verhoog dit om de golfvorm naar boven te verplaatsen op het scherm en verlaag het om het naar beneden te verplaatsen. De grootte van de verticale as verschuift dienovereenkomstig zodat u altijd de correcte spanning kunt lezen van de as. De aanpassing van dit instelling komt overeen met het klikken en verslepen van de verticale as. Klik op de reset-knop om terug te keren naar een offset van 0,00%.

Instelling Vertraging (alleen voor referentiegolfvormen). Verhoog dit om de golfvorm naar links te verplaatsen ten opzichte van het tijdreferentiepunt, verlaag het om naar rechts te verplaatsen. Klik op de reset-knop om terug te keren naar een vertraging van 0 s.

De locatie van het tijdreferentiepunt is afhankelijk van de activeringsmodus van PicoScope. Als de activeringsmodus Geen is, dan wordt de vertraging gemeten ten opzichte van de linkerrand van het scherm. In alle andere activeringsmodi, wordt de vertraging gemeten ten opzichte van de activerings marker.

Naar de achterzijde zenden. Hiermee wordt het kanaal getekend achter alle andere kanalen. Gebruik dit als het kanaal een ander kanaal van belang bedekt.

Naar de voorzijde brengen. Hiermee tekent u het kanaal voor alle andere kanalen. Gebruik dit als het kanaal verborgen is achter een ander kanaal.
7.1.1.3 Laagdoorlaatfilter

De functie **laagdoorlaatfilter** kan hoge frequenties van elk geselecteerd ingangskanaal weigeren. De filterinstelling is te vinden in het dialoogvenster **Geavanceerde Kanaalopties**. U kunt dit openen door te klikken op de knop **Kanaalopties** voor het desbetreffende kanaal op de **werkbalk Kanalen**. De instelling bepaalt de frequentielimiet van de filter. Dit moet onder de helft van de bemonsteringssnelheid liggen zoals weergegeven in het **Eigenschappenvenster**.

![低通滤波器](image)

Zie voor beschikbaarheid de **tabel met Apparaateigenschappen**.

Een laagdoorlaatfilter is handig voor het verwerpen van ruis. De onderstaande gesplitste schermafbeelding toont het effect van een 1 kHz laagdoorlaatfilter op een signaal met veel ruis. De onderliggende vorm van het signaal is bewaard gebleven, maar de hoogfrequente ruis is verwijderd:

![低通滤波器效果](image)

Links: vóór laagdoorlaatfilter. Rechts: na 1 kHz laagdoorlaatfilter.
Filterdetails

Het algoritme van de laagdoorlaatfilter is gekozen op basis van de verhouding van de geselecteerde frequentielimiet (f_C) ten opzichte van de bemonsteringssnelheid (f_S), als volgt:

<table>
<thead>
<tr>
<th>$f_C \div f_S$</th>
<th>Filtertype</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0 tot 0,1</td>
<td>Voortschrijdend gemiddelde</td>
<td>Een voortschrijdend-gemiddelde-filter wordt gebruikt voor lage frequentielimieten. De lengte van de filter wordt aangepast om de geselecteerde frequentielimiet te bereiken, gedefinieerd als het eerste minimum in de frequentierespons. Er is veel signaallekkage boven de frequentielimiet. Deze filter verandert een verticale flank in een lineaire helling.</td>
</tr>
<tr>
<td>0,1 tot < 0,5</td>
<td>FIR</td>
<td>Er wordt een eindige impulsresponsfilter gebruikt voor medium tot hoge frequentielimieten. Dit heeft een monotone demping boven de frequentielimiet en ondervindt daarom minder lekkage dan de voortschrijdend-gemiddelde-filter.</td>
</tr>
</tbody>
</table>

U kunt PicoScope verplichten om het ene of andere type filter te gebruiken met de instelling **Aantal monsters** in de **werkbalk voor vastleggingsinstellingen** om de verhouding f_C/f_S in een van de twee bereiken van de tabel in te stellen. Zoals de tabel aantoont, moet de frequentielimiet onder de helft van de bemonsteringssnelheid liggen.
7.1.2 Knop digitale ingangen
Locatie: Werkbalk Kanalen (alleen MSO's)
Doel: hiermee voert u de instellingen uit voor de digitale ingangen van een mixed signal oscilloscoop (MSO)

Digitale instellingen

Digitaal in-/uitschakelen. Schakelt de digitale weergave in- of uit. Als er digitale ingangen geactiveerd zijn in het dialoogvenster Digitale instellingen, dan blijven ze actief zelfs als ze verborgen zijn.

Digitale instellingen. Hiermee opent u het dialoogvenster Digitale instellingen voor selectie en opties van kanalen.

7.1.2.1 Dialoogvenster Digitale instellingen

Locatie: MSO-knop
Doel: hiermee voert u de instellingen uit voor de digitale ingangen van een mixed-signal-oscilloscoop (MSO)
Drempelwaarde instellen

Kies hier de digitale drempelspanning uit de vervolgkeuzelijst of selecteer de **Aangepaste** drempel en stel uw eigen spanning in met behulp van het numerieke vak. De vooraf ingestelde drempelwaarden zijn:

<table>
<thead>
<tr>
<th>Spanning</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TTL:</td>
<td>1,5 V</td>
</tr>
<tr>
<td>CMOS:</td>
<td>2,5 V</td>
</tr>
<tr>
<td>ECL:</td>
<td>-1,3 V</td>
</tr>
<tr>
<td>PECL:</td>
<td>3,7 V</td>
</tr>
<tr>
<td>LVPECL:</td>
<td>2 V</td>
</tr>
<tr>
<td>LVCMOS 1,5 V:</td>
<td>750 mV</td>
</tr>
<tr>
<td>LVCMOS 1,8 V:</td>
<td>0,9 V</td>
</tr>
<tr>
<td>LVCMOS 2,5 V:</td>
<td>1,25 V</td>
</tr>
<tr>
<td>LVCMOS 3,3 V:</td>
<td>1,65 V</td>
</tr>
<tr>
<td>LVDS:</td>
<td>100 mV</td>
</tr>
<tr>
<td>0V Differentieel:</td>
<td>0 V</td>
</tr>
</tbody>
</table>

Elke poort heeft zijn eigen onafhankelijke drempel. Poort 0 bevat kanalen D7...D0 en Poort 1 bevat kanalen D15...D8.

Beschikbare kanalen

Hier worden de beschikbare digitale ingangskanalen getoond. Ze worden niet weergegeven tenzij u deze toevoegt aan het gedeelte **Te tonen kanalen en groepen** in het dialoogvenster. Klik en versleep de afzonderlijke kanalen naar het gedeelte **Te tonen kanalen en groepen** of selecteer een aantal kanalen en sleep ze allemaal tegelijkertijd, of dubbelklik op een kanaal om het rechtstreeks toe te voegen.

Te tonen kanalen en groepen

Hier worden de digitale kanalen getoond die zijn geselecteerd voor weergave. Alle groepen kanalen die u hebt gedefinieerd worden hier ook weergegeven.

- **duidt op een digitaal kanaal.**
- **duidt op een groep digitale kanalen. Standaard worden kanalen toegevoegd in een groep met de meest significante bit bovenaan geplaatst.**

Als u de naam van een kanaal of groep wilt wijzigen, klikt u op de naam en typt u de nieuwe naam in. Voor andere bewerkingen klikt u met de rechtermuisknop op het kanaal of de groep voor een actiemenu:

<table>
<thead>
<tr>
<th>Actie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable</td>
</tr>
<tr>
<td>Disable</td>
</tr>
<tr>
<td>Invert</td>
</tr>
<tr>
<td>Rename</td>
</tr>
<tr>
<td>Reverse Channel Order</td>
</tr>
<tr>
<td>Remove</td>
</tr>
</tbody>
</table>

Inschakelen: het kanaal weergeven. Alle kanalen in de lijst zijn standaard ingeschakeld.

Uitschakelen: het kanaal verbergen.

Omkeren: keer de polariteit van dit kanaal om. Nuttig voor actieve-lage signalen.

Hernoemen: typ een nieuwe naam in voor het kanaal.

Kanaalvolgorde omkeren: (Alleen groepen) keer volgorde van de kanalen in de groep om.

Verwijderen: verwijder het kanaal uit de lijst.
7.2 Kanalen-werkbalk PicoLog 1000 serie

Met de **Werkbalk Kanalen** beheert u de instellingen voor elk verticaal ingangs *kanaal*. De werk balk heeft een ander uiterlijk voor PicoLog 1000 serie Data Loggers dan voor PicoScope-oscilloscopen (Zie **werkbalk Kanalen** voor de standaardversie).

Kanaalinstellingen. Deze instelling bevat twee knoppen in een vierkant kader. Klik op het kleine driehoekje links om het dialoogvenster *Kanaalopties* te openen, met opties voor *probes*, *resolutieverbetering*, *schaalverdeling* en filters. Klik op de naam van het kanaal om het kanaal in/uit te schakelen.

Knop digitale uitgangen. Voor het instellen van de 2 of 4 digitale uitgangen van het PicoLog 1000-serie apparaat. Hiermee opent u het dialoogvenster *Digitale uitgangen*.
7.2.1 Instelling digitale uitgangen PicoLog 1000 serie

Locatie: **knop digitale uitgangen** op de werkbalk **Kanalen**

Doel: hiermee wordt de ingebouwde signaalgenerator van de **datalogger** ingesteld

Het bereik van de beschikbare instellingen is afhankelijk van het soort datalogger dat u hebt.

PWM-uitgang

PWM. De PWM-uitgang op sommige apparaten kan worden ingesteld om een pulsbreedte-gemoduleerde golfvorm te genereren. Dit is een logisch signaal dat wordt omgeschakeld met een opgegeven periode en bedrijfscyclus. De gemiddelde waarde van het signaal is evenredig met de bedrijfscyclus. Op deze manier kan het worden verwerkt door een externe laagdoorlaatfilter om een signaal te produceren dat evenredig is met de bedrijfscyclus.

- **Uit:** schakel de PWM-uitgang uit.
- **PWM:** schakel de PWM-uitgang in met de opgegeven instelbare **Periode** en **Bedrijfscyclus**.

Periode. Selecteer de duur van een cyclus van de PWM-uitgang.

Bedrijfscyclus. Het percentage van de PWM-sigmaalperiode dat het signaal op het hoge logische niveau doorbrenget. Als de periode bijvoorbeeld 1 ms is en de bedrijfscyclus 25%, dan zal het signaal 25% van 1 ms = 250 µs van elke cyclus doorbrengen op het hoge logische niveau en de resterende 750 µs op het lage logische niveau. De spanningen van de logische hoge en lage niveaus worden vermeld in de gebruikershandleiding van de datalogger. Meestal is dit 0 Volt (laag) en 3,3 volt (hoog). Met behulp van ons voorbeeld, zal de gemiddelde waarde van de PWM-uitgang 25% x 3,3 volt = 0,825 volt zijn.

Digitale uitgangen

PicoLog PC Dataloggers hebben één of meer digitale uitgangen die lage stroomlasten kunnen aansturen.

Elke uitgang kan worden ingesteld op een hoog of laag logisch niveau door de schuifregelaar te verplaatsen.
7.3 Werkbalk USB DrDAQ kanalen

De werk balk Kanalen voor USB-DrDAQ beheert de instellingen voor elk ingang- en uitgang kanaal:

- **Instelling sensor geluidsgolfvorm.** De kleine pijl stelt opties in voor de geluidsgolf-ingang (gemeten in ongekalibreerde amplitude-eenheden) met de ingebouwde microfoon. Klik op de naam van het kanaal om het kanaal in/uit te schakelen.

- **Instelling sensor geluidsniveau.** De kleine pijl stelt opties in voor de geluidsniveau-ingang (gemeten in decibel) met de ingebouwde microfoon. Klik op de naam van het kanaal om het kanaal in/uit te schakelen.

- **Instelling scoop-ingang.** Met de kleine pijl worden opties ingesteld voor de oscilloscoop-ingang (de BNC-aansluiting gemarkeerd met Scope), met opties voor probes en schaalverdeling. Klik op de naam van het kanaal om het kanaal in/uit te schakelen.

- **Instelling weerstand-ingang.** Met de kleine pijl worden opties ingesteld voor de 0 tot 1 MΩ weerstand-metende ingang op het schroefklemmenblok. Klik op de naam van het kanaal om het kanaal in/uit te schakelen.

- **Instelling pH-ingang.** Met de kleine pijl stelt u opties in voor de pH en ORP (oxidatie/reductiepotentieel)-meetingang. Klik op de naam van het kanaal om het kanaal in/uit te schakelen.

- **Instelling temperatuursensor.** Met de kleine pijl stelt u opties in voor de ingebouwde temperatuursensor. Klik op de naam van het kanaal om het kanaal in/uit te schakelen.

- **Instelling lichtsensor.** Met de kleine pijl stelt u opties in voor de ingebouwde lichtsensor. Klik op de naam van het kanaal om het kanaal in/uit te schakelen.

- **Instelling externe sensor.** Met de kleine pijl stelt u opties in voor de externe sensingangen 1 tot 3. Klik op de naam van het kanaal om het kanaal in/uit te schakelen.

- **Signaalgeneratorknop.** Dit opent het dialoogvenster Signaalgenerator, waarmee u de kenmerken van de signaalgenerator instelt.

- **RGB LED-knop.** Hiermee opent u het dialoogvenster RGB LED-instellingen, waarmee u de kleur van de ingebouwde LED kunt instellen.

- **Knop digitale uitgangen.** Met deze knop opent u het dialoogvenster digitale uitgangen, waarmee u de statussen van de vier digitale uitgangen kunt instellen.
7.3.1 USB DrDAQ RGB LED-instelling

Locatie: **USB DrDAQ werkbalk Kanalen** > RGB LED-knop:

Doel: hiermee kunt u de kleur van de ingebouwde LED instellen op om het even welke van 16,7 miljoen kleuren

LED-instellingen inschakelen:
- **Vak ingeschakeld:** nu kunt u de ingebouwde RGB LED instellen op elke gewenste kleur
- **Vak uitgeschakeld:** de LED biedt de normale knipperfunctie om aan te geven dat er gegevens worden vastgelegd op de ingangskanalen

Andere instellingen: experimenteer hiermee om te zien wat ze doen!
7.3.2 USB DrDAQ Digitale uitgangen-instelling

Locatie: **werkbalk Kanalen USB-DrDAQ** > knop Digitale uitgangen:

Doel: hiermee kunt u de kenmerken van de vier digitale uitgangen op het schroefklemmenblok instellen.

Elke uitgang heeft een eigen set instellingen:

Instelling PWM/Out: **Ingesteld op Out:** u kunt de uitgang instellen op een vaste logische lage waarde (in de buurt van 0 V) of een vaste logische hoge waarde (in de buurt van 3,3 V).

Instellen op PWM: de uitgang is een golfvorm met twee niveaus (afwisselend 0 V en 3,3 V) met variabele **bedrijfscyclus** en **Periode.** Het signaal kan worden gefilterd om een DC-niveau te produceren dat evenredig is met de bedrijfscyclus.

Periode: de tijd tussen opeenvolgende pulsen op de uitgang.

Bedrijfscyclus: het percentage van de **Periode** waarvoor de uitgang hoog is.
7.4 Werkbalk voor instelling van vastlegging

De **Werkbalk voor vastleggingsinstellingen** bepaalt de tijd-gerelateerde of frequentie-gerelateerde instellingen van uw oscilloscoop.

Scoopmodus

In **Scoopmodus** ziet de werk balk er als volgt uit:

(Zie hieronder voor verschillende versies van de werk balk in **spectrummodus** en **persistentiemodus**).

- **Scoopmodus.** Stelt PicoScope in om te functioneren als een oscilloscoop. Gebruik de knop **Automatische instellingen** om de instellingen te optimaliseren. Als u dit wenst, kunt u een secundair spectrumgezichtspunt weergeven in het contextmenu (door met de rechtermuisknop te klikken op het scoopgezichtspunt).

- **Persistentiemodus.** Hiermee schakelt u de persistentiemodus in en uit. Op deze manier blijven oude sporen op het scherm in vage kleuren en worden nieuwe sporen er bovenop getekend in heldere kleuren. Het gebruik van kleuren wordt ingesteld in het dialoogvenster **persistentie-opties.** PicoScope onthoud alle gezichtspunten die geopend waren, zodat u hiernaar kunt terugkeren door opnieuw te klikken op de knop **Persistentiemodus.**

- **Spectrummodus.** Hiermee stelt u PicoScope in om te functioneren als een spectrumanalyser. Gebruik de knop **Automatische instellingen** om de instellingen te optimaliseren. Als u dit wenst, kunt u een secundair scoopgezichtspunt toevoegen via het contextmenu (door met de rechtermuisknop te klikken op het scoopgezichtspunt).

Automatische instellingen. Hiermee wordt gezocht naar een signaal op één van de ingeschakelde ingangssignalen. Vervolgens wordt de tijdbasis en het signaalbereik ingesteld om het signaal correct weer te geven.

Start. PicoScope herstelt de standaardinstellingen. Dit is gelijk aan de opdracht **Bestand > Opstartinstellingen > Laad opstartinstellingen.**

Tijdinstellingen. Dit stelt de tijd in, vertegenwoordigd door één opdeling van de horizontale as als de **horizontale zoom** is ingesteld op x1. De beschikbare tijdbasis zijn afhankelijk van het type oscilloscoop dat u gebruikt.

Door een tijdbasis te kiezen van 200 ms/div of langzamer, schakelt PicoScope over naar een andere modus van gegevensoverdracht. De interne details hiervan worden verzorgd door PicoScope, maar de trage modus beperkt de bemonsteringssnelheid tot een maximum van 1 miljoen monsters per seconde.
U kunt deze instellingen veranderen om de totale tijd over het scoopgezichtspunt weer te geven, in plaats van de tijd per divisie, met behulp van de instellingen voor **Verzameltijd eenheden** op het tabblad **Algemeen** van het dialoogvenster **Voorkeuren**.

Horizontale zoom. Hiermee zoomt u in op het gezichtspunt in de horizontale richting alleen, met de opgegeven hoeveelheid. Klik op de knoppen [+] en [-] om de zoomfactor aan te passen, of de knop [reset] om te resetten.

Aantal monsters. Hiermee stelt u het maximum aantal monsters in dat wordt vastgelegd voor elk kanaal. Als dit groter is dan het aantal pixels over het scoopgezichtspunt, dan kunt u inzoomen om meer details te zien. Het werkelijke aantal vastgelegde monsters wordt weergegeven in het **Eigenschappenvenster** en kan afwijken van het hier aangevraagde aantal, afhankelijk van de geselecteerde tijdbasis en de oscilloscoop die in gebruik is. Stel eerst de **Activeringsmodus** in op **Enkel** om één golfvorm vast te leggen die het volledige buffergeheugen bezet.

Hardwareresolutie (*alleen oscilloscopen met flexibele resolutie*). Hiermee stelt u het aantal hardwarebits voor bemonstering in. Het optiebereik hangt af van het aantal ingeschakelde kanalen en de geselecteerde bemonsteringssnelheid. Met **Automatische resolutie** kiest u de hoogste resolutie die compatibel is met de momenteel geselecteerde bemonsteringssnelheid en vastleggingsgrootte. De resolutie kan verder worden verhoogd door softwarefilters: zie resolutieverbetering.

Spectrummodus

In **spectrummodus** ziet de werkbalk **Vastleggingsinstellingen** er als volgt uit:

Spectrumbereik. Hiermee wordt het spectrumbereik ingesteld over de horizontale as van de spectranalyser als de **horizontale zoom** is ingesteld op x1.

Spectrumopties. Dit wordt weergegeven als een **spectrumgezichtspunt** is geopend, ongeacht of **scoopmodus** of **spectrummodus** is geselecteerd. Hiermee opent u het dialoogvenster **Spectrumopties**.

Persistentiemodus

In **persistentiemodus** ziet de werkbalk voor **Vastleggingsinstellingen** er als volgt uit:

Persistentie-opties. Hiermee wordt het dialoogvenster **persistentie-opties** geopend, waarmee verschillende parameters worden ingesteld voor de manier waarop PicoScope oude en nieuwe gegevens instelt in persistentiemodus.
7.4.1 Dialoogvenster Spectrumopties

Dit dialoogvenster verschijnt als u op de knop voor **Spectrumopties** klikt in de **werkbalk voor vastleggingsinstellingen**. Het is alleen beschikbaar als een **spectrumgezichtspunt** is geopend. Het bevat instellingen die bepalen hoe PicoScope de bron-golfvorm in het huidige scoopgezichtspunt converteert naar een spectrumgezichtspunt.

![Dialoogvenster Spectrumopties](image)

Spectrum Bins
Het aantal frequentiebins waarin het spectrum is verdeeld. Deze instelling stelt het maximum aantal frequentiebins in. De software kan dit wel of niet voorzien afhankelijk van andere instellingen. De belangrijkste beperking is dat het aantal bins niet meer mag zijn dan de helft van het aantal monsters in de bron-golfvorm.

Als de bron-golfvorm meer monsters bevat dan nodig is, zal PicoScope zoveel monsters gebruiken als nodig is vanaf het begin van de golfvormbuffer. Als de bron-golfvorm bijvoorbeeld 100.000 monsters bevat en u vraagt 16.384 frequentiebins aan, dan heeft PicoScope slechts 2 x 16.384 = 32.768 monsters nodig. Het programma maakt dus gebruik van de eerste 32.768 monsters uit de golfvormbuffer en de rest wordt genegeerd. Het aantal daadwerkelijk gebruikte gegevens wordt weergegeven als de instelling **Tijdvenster** in het **Eigenschappenvenster**.

Window Functie
Hiermee kunt u een van de standaard vensterfuncties kiezen om het effect te verminderen van een tijd-beperkte golfvorm. Zie **Vensterfuncties**.

Weergave modus
U kunt kiezen uit **Grootte, Gemiddelde waarde** of **Peak-hold**.
Grootte: het spectrumgezichtspunt toont het frequentiespectrum van de laatste golfvorm of live of opgeslagen in de golfvormbuffer.

Gemiddelde waarde: het spectrumgezichtspunt toont een voortschrijdend gemiddelde van spectra berekend op basis van alle golfvormen in de golfvormbuffer. Dit vermindert het effect van de ruis zichtbaar in het spectrumgezichtspunt. Om de gemiddelde gegevens te wissen, klikt u op Stop en vervolgens op Start of verandert u van gemiddelde waarde-modus naar Grootte-modus.

Peak-hold: het spectrumgezichtspunt toont een rollend maximum van spectra berekend op basis van alle golfvormen in de buffer. In deze modus zal de amplitude van elke frequentieband in het spectrumgezichtspunt hetzelfde blijven of verhogen, maar nooit in tijd afnemen. Om de Peak-hold-gegevens te wissen, klikt u op Stop en vervolgens op Start, of verandert u van Peak-hold modus naar Grootte-modus.

Opmerking: als u omschakelt naar Gemiddelde waarde of Peak-hold, dan kan er een merkbare vertraging zijn terwijl PicoScope de volledige inhoud van de golfvormbuffer verwerkt om de aanvankelijke weergave op te bouwen. Als dit gebeurt, wordt een voortgangsbalk weergegeven aan de onderkant van het venster om te tonen dat PicoScope bezig is:

Schaal

Hiermee geeft u de labelling en de schaalverdeling van de verticale as op (signaal). Dit kan een van de volgende instellingen zijn:

Lineair:
De verticale as wordt geschaald in volt.

Logaritmisch:
De verticale as wordt geschaald in decibel, met als referentie het niveau geselecteerd onder de instelling logaritmische eenheid.

dBV: Referentieniveau is 1 volt.

dBu: Referentieniveau is 1 milliwatt met een laadweerstand van 600 ohm. Dit komt overeen met een spanning van ongeveer 775 mV.

dBm: Referentieniveau is één milliwatt in de opgegeven laadimpedantie. U kunt de laadimpedantie invoeren in het vak onder de instelling Logaritmische eenheid.

Willekeurig dB: Referentieniveau is een willekeurige spanning. U kunt deze instellen in het vak onder de instelling Logaritmische eenheid.
7.4.2 Dialoogvenster voor persistentie-opties

Dit dialoogvenster verschijnt wanneer u op de knop Persistentie-opties in de werkbalk voor vastleggingsinstellingen. Het is alleen beschikbaar als persistentiemodus is geselecteerd. Hiermee kunt u de kleuren en het vervagingsalgoritme instellingen instellen om nieuwe of frequentie gegevens te onderscheiden van oude of intermitterende gegevens in het persistentiegezichtspunt.

<table>
<thead>
<tr>
<th>Modus</th>
<th>Digitale kleur. Deze modus maakt gebruik van een scala kleuren om de frequentie van golfvormgegevens aan te geven. Rood wordt gebruikt voor de meest frequentie gegevens en minder frequente gegevens worden getoond van geel naar blauw.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analogie intensiteit. Deze modus maakt gebruik van kleurintensiteit om de leeftijd van golfvormgegevens aan te geven. De laatste gegevens worden met volledige intensiteit getekend in de geselecteerde kleur voor dat kanaal, oudere gegevens worden getekend in vagere tinten van dezelfde kleur.</td>
<td></td>
</tr>
<tr>
<td>Geavanceerd. Deze modus opent een deelvenster met Aangepaste opties onderaan het dialoogvenster om het persistentiegezichtspunt aan te passen.</td>
<td></td>
</tr>
<tr>
<td>Vervaltijd</td>
<td>De tijd, in milliseconden voor golfgegevens om te vervagen van maximale intensiteit naar minimale intensiteit of van rood naar blauw. Hoe langer de vervaltijd, hoe langer de oude golfvormen op het scherm zullen blijven.</td>
</tr>
<tr>
<td>Saturatie</td>
<td>De intensiteit of kleur waarmee nieuwe golfvormen worden getekend.</td>
</tr>
<tr>
<td>Vervalintensiteit</td>
<td>De intensiteit of de kleur waarnaar de oudste golfvormen vervallen als de vervaltijd verloopt. Als de vervalintensiteit nul is, dan worden oudere golfvormen volledig van het scherm gewist na vervaltijd. Voor waarden hoger dan nul voor vervalintensiteit blijven oude golfvormen onbepaalde tijd op het scherm staan met die intensiteit tenzij ze worden overschreven door nieuwe waarden.</td>
</tr>
</tbody>
</table>
Aangepaste opties

Lijntekening Het type lijn tussen monsters die aan elkaar grenzen in de tijd.
 Fosforemulatie. Dit verbindt elk paar monsterpunten met een lijn waarvan de intensiteit omgekeerd afwisselt met de draaisnelheid.
 Constante dichtheid. Dit verbindt elk paar monsterpunten met een lijn van een uniforme kleur.
 Verspreidingspatroon. Hiermee worden monsterpunten getekend als stippen zonder verbinding.

Kleurschema Fosfor. Dit gebruikt een enkele tint voor elk kanaal, met wisselende intensiteit.
 Kleur. Dit gebruikt een kleur van rood naar blauw voor de leeftijd van elke golfvorm.

Achtergrond Zwart. Dit overschrijft de instellingen in het dialoogvenster Kleurvoorkeuren. Dit is de standaardinstelling.
 Wit. Dit overschrijft de instellingen in het dialoogvenster Kleurvoorkeuren.
 Voorkeursinstellingen van de gebruiker. Hiermee wordt de achtergrondkleur ingesteld op de voorkeursinstellingen in de pagina Kleuren van het dialoogvenster Voorkeuren.

Data behouden Deze optie wordt alleen ingeschakeld als persistentiemodus (zie hieronder) is ingesteld op Tijdvertraging.
 Decay Time-out. Oude golfvormen vervagen tot de Vervalintensiteit en vervolgens verdwijnen ze.
 Oneindig. Oude golfvormen vervagen tot ze de vervalintensiteit bereiken en daarna blijven ze voor onbepaalde tijd staan tenzij ze worden overschreven door nieuwe golfvormen.

Persistentiemodus Frequentie. Punten op het scherm worden getekend met een kleur of intensiteit die afhangt van de frequentie waarmee ze worden geraakt door golfvormen.
 Tijd Decay. Punten op het scherm worden getekend met volledige intensiteit als ze door een golfvorm worden geraakt en mogen vervolgens vervallen tot de vervalintensiteit. Het gedrag hierna is afhankelijk van de instelling Data behouden (zie hierboven).
7.5 Navigatiewerkbalk buffer

Met de **Buffernavigatiewerkbalk** kunt u een golfvorm selecteren uit de golfvormbuffer.

Wat is de golfvormbuffer?

Afhankelijk van de instellingen die u hebt gekozen, kan PicoScope meer dan één golfvorm opslaan in de golfvormbuffer. Wanneer u klikt op de **Start** knop of een opname-instelling wijzigt, maakt PicoScope de buffer leeg en voegt vervolgens een nieuwe golfvorm in telkens als de oscilloscoop gegevens vastlegt. Dit gaat zo door tot de buffer vol is of tot u klikt op de **Stop** knop. U kunt het aantal golfvormen in de buffer beperken tot een getal tussen 1 en 10.000 met behulp van de pagina *Algemene voorkeuren*.

U kunt de golfvormen in de buffer bekijken met behulp van deze knoppen:

- **Knop eerste golfvorm.** Geeft golfvorm 1 weer.
- **Knop vorige golfvorm.** Geeft de vorige golfvorm in de buffer weer.
- **Indicator golfvormnummer.** Toont welke golfvorm momenteel wordt weergegeven en hoeveel golfvormen de buffer bevat. U kunt het nummer in het vak bewerken en drukken op **Enter** en PicoScope zal naar de opgegeven golfvorm gaan.
- **Knop volgende golfvorm.** Geeft de volgende golfvorm in de buffer weer.
- **Knop laatste golfvorm.** Geeft de laatste golfvorm in de buffer weer.
- **Knop Buffernavigatie.** Open het *venster voor buffernavigatie* voor snelle selectie van buffergolfvormen.
7.6 Werkbalk Metingen
Met de **werkbalk Metingen** stelt u de tabel met metingen in.

Het bevat de volgende knoppen:

- **Meting toevoegen** Hiermee voegt u een rij toe aan de tabel en vervolgens wordt het dialoogvenster Meting toevoegen geopend.

- **Meting bewerken** Dit opent het dialoogvenster Meting bewerken voor de momenteel geselecteerde meting. U kunt ook een meting bewerken door te dubbelklikken op een rij van de tabel met metingen.

- **Meting verwijderen** Hiermee verwijdert u de geselecteerde rij uit de tabel met metingen.

- **Linialen** Dit opent het dialoogvenster voor de Liniaalinstellingen om de werking van faselinialen in te stellen.

Deze werkbalk bevindt zich normaal onderaan het programmavenster, maar kan worden verplaatst naar de bovenzijde met Gereedschap > Voorkeuren > Opties > Onderste werkbalk bovenaan.
7.7 Knop Signaalgenerator

Met de **knop Signaalgenerator** kunt u de testsignaalgenerator van uw *scoop* instellen, als deze er één heeft of de demosignaal-instellingen als PicoScope in *demomodus* staat.

Als uw scoop een ingebouwde signaalgenerator heeft, dan wordt met **knop Signaalgenerator** het **dialoogvenster Signaalgenerator** geopend.

Als PicoScope in *demomodus* staat dan wordt door het klikken op de **knop Signaalgenerator** het **menu voor demosignalen** geopend.

7.7.1 Dialoogvenster Signaalgenerator (PicoScope-apparaten)

Locatie: **Knop Signaalgenerator** [image] op de werkbalk

Doel: hiermee wordt de ingebouwde signaalgenerator van de *scoop* ingesteld

Niet alle apparaten hebben een signaalgenerator. De apparaten die dit wel hebben, hebben een variërende reeks instelmogelijkheden in het dialoogvenster signaalgenerator. Zie voor meer details [de tabel met apparaateigenschappen](#).
7.7.1.1 Basisinstellingen

Signal aan. Schakel dit vakje in om de signaalgenerator in te schakelen.

Golftype. Selecteer het type golf om te genereren. De [lijst met golftypen](#) hangt af van de mogelijkheden van het apparaat.

Importeren. Hiermee wordt een dialoogvenster voor bestandsselectie geopend waarmee een [willekeurig golfvormbestand](#) kunt importeren. Het bestand wordt geladen in de [generator voor willekeurige golfvormen](#) en de generator wordt ingeschakeld. Deze knop is alleen beschikbaar als uw scoop een [generator voor willekeurige golfvormen](#) heeft.

Willekeurig. Dit opent het venster [Willekeurige golfvorm](#). Deze knop is alleen beschikbaar als uw scoop een [generator voor willekeurige golfvormen](#) heeft.

Startfrequentie. Typ in dit vak een frequentie of gebruik de knoppen om een frequentie te selecteren. Als het apparaat een frequentie-sweep-generator heeft, kunt u in dit vak de startfrequentie van de sweep instellen.

Amplitude. De amplitude van de golfvorm gemeten van piek tot piek. Als bijvoorbeeld de **Amplitude** 1 V is en de **Offset** 0 V, dan zal de uitgang een negatieve piek hebben van −0,5 V en een positieve piek van + 0,5 V.

Offset. De gemiddelde waarde van het signaal. Als de **Offset** bijvoorbeeld 0 V is, dan zal een sinus- of vierkante golf gelijke positieve en negatieve piekspanningen hebben.
7.7.1.2 Sweep-instellingen

De signaalgenerator genereert normaal een vaste frequentie ingesteld door de instelling van de startfrequentie. In sweepmodus genereert het een frequentie die varieert tussen twee opgegeven grenzen.

Actief. Schakel dit vakje in om de sweepmodus te activeren.

Veegtype. Hiermee geeft u de richting aan waarin de frequentie wordt geveegd.

Stopfrequentie. In sweepmodus stopt de generator met het verhogen van de frequentie wanneer het de stopfrequentie bereikt.

Frequentieverhoging. In sweepmodus verhoogt of verlaagt de generator elkeVerhogingsinterval de frequentie met deze waarde.

Verhogingsinterval. In sweepmodus verhoogt of verlaagt de generator de frequentie met de frequentieverhoging elke keer dat dit interval eindigt.
7.7.1.3 Instellingen voor activering

De signaalgenerator werkt normaal ononderbroken. Als u Activering inschakelt, dan zal de signaalgenerator wachten op een opgegeven gebeurtenis voordat het een uitgang genereert.

Actief. Schakel dit vakje in om Activering in te schakelen voor de signaalgenerator.

Bron activeren. Hiermee geeft u het signaal op dat zal worden gebruikt om de signaalgenerator te activeren:
- **Scoop.** Dezelfde activeringsvoorwaarde waarmee de scoop wordt geactiveerd.
- **Handmatig.** De knop *Nu activeren.*
- **Ext-invoer.** De ingang aangeduid als *EXT* (indien aanwezig) op het apparaat.

Type. De voorwaarde waaraan moet worden voldaan door het activeringssignaal:
- **Stijgend.** De signaalgenerator start als het activeringssignaal van laag naar hoog gaat.
- **Dalend.** De signaalgenerator start als het activeringssignaal van hoog naar laag gaat.
- **Gate hoog.** De signaalgenerator start als het activeringssignaal hoog is.
- **Gate laag.** De signaalgenerator start als het activeringssignaal laag is.

Cycli per activering. Het aantal te genereren cycli van de opgegeven golfvorm elke keer dat de generator wordt geactiveerd. Als de activering van het *Type Gate hoog* of *Gate laag* is, dan zal de generator stoppen als het gate-sigandaal inactief wordt, zelfs als het gevraagde aantal cycli nog niet is gegenereerd.

Drempel. Alleen beschikbaar als de *Activeringsbron Ext-invoer* is. Hiermee stelt u het spanningsniveau in dat wordt gebruikt om de boven- en onderlimieten van het activeringssignaal te onderscheiden.

Handmatige activering. Alleen beschikbaar als de *Activeringsbron Handmatig* is. Als het *Type Stijgend* of *Dalend* is, dan activeert het indrukken van deze knop de signaalgenerator om het opgegeven aantal cycli te produceren. Als het *Type Gate hoog* of *Gate laag* is, dan begint of stopt de signaalgenerator bij het indrukken van deze knop voor onbepaalde duur cycli te genereren.
7.7.2 Dialoogvenster signaalgenerator (USB DrDAQ)

Locatie: Knop signaalgenerator op de werkbalk Kanalen voor USB DrDAQ

Doel: hiermee stelt u de ingebouwde signaalgenerator van USB DrDAQ in

Dialoogvenster Signaalgenerator voor de USB DrDAQ

Basisinstellingen

- **Signaal aan.** Schakel dit vakje in om de signaalgenerator in te schakelen.

- **Golftype.** Selecteer de vorm van de golfvorm om te genereren.

- **Willekeurig.** Dit opent het venster Willekeurige Golfvorm, waar u uw eigen golfvorm kunt definiëren.

- **Frequentie.** Typ in dit vak een frequentie of gebruik de knoppen om een frequentie te selecteren voor de uitgangsgolfvorm.

- **Amplitude.** De amplitude van de golfvorm gemeten van piek tot piek. Als bijvoorbeeld de Amplitude 1 V is en de Offset 0 V, dan zal de uitgang een negatieve piek hebben van −0,5 V en een positieve piek van + 0,5 V.

- **Offset.** De gemiddelde waarde van het signaal. Als bijvoorbeeld de Offset 0 V is, dan zal een sinus- of vierkante golf gelijke positieve en negatieve piekspanningen hebben.
7.7.3 Willekeurige golfvormbestanden

Sommige PicoScope PC-oscilloscopen hebben een generator voor willekeurige
golfvormen (Arbitrary Waveform Generator of AWG), die wordt ingeschakeld in het
diaalogenvenster Signaalgenerator. PicoScope kan de AWG programmeren met een
standaardgolfvorm, zoals een sinus- of vierkante golf, of een willekeurige golfvorm die
u maakt of importeert uit een tekstbestand.

Een tekstbestand voor PicoScope 6 is een lijst van decimale drijvende-kommawaarden,
zoals in dit voorbeeld:

```
0,0
0,3
0,9
0,6
0,6
0,0
-0,3
0,0
0,0
0,0
``` 

Het bestand kan tussen 10 en 8.192 waarden hebben, zoveel als het nodig heeft om
de golfvorm te definiëren. Elke regel mag meer dan één waarde hebben. In dit geval
moeten de waarden worden gescheiden door tabs of komma's.

De waarden zijn monsters tussen 1,0 en +1,0 en moeten gelijk worden verdeeld in de
tijd. De uitgang wordt geschaald op de amplitude geselecteerd in het diaalogenvenster
Signaalgenerator. De geselecteerde offset wordt toegevoegd indien nodig. Als de
amplitude van de signaalgenerator bijvoorbeeld is ingesteld op "1 V" en de offset op "0
V", dan komt een monsterwaarde van -1,0- overeen met een uitgang van -1,0 V en
een monster van +1,0 komt overeen met een uitgang van +1,0 V.

Het bestand moet exact één cyclus van de golfvorm bevatten. Deze wordt vervolgens
afgespeeld met de snelheid opgegeven in het diaalogenvenster Signaalgenerator. In het
bovenstaande voorbeeld was de signaalgenerator ingesteld op 1 kHz, zodat één cyclus
van de golfvorm 1 ms duurt. Er zijn 10 monsters in de golfvorm, zodat elk monster 0,1
ms duurt.
Venster Generator voor willekeurige golfvormen
Locatie: dialoogvenster signaalgenerator > Willekeurig

Doel: hiermee kunt u willekeurige golfvormen importeren, bewerken, tekenen en laden in de willekeurige golfvormgenerator van uw oscilloscoop. U kunt ook de gegevens importeren en exporteren in CSV-formaat voor gebruik in andere toepassingen.

Zodra de gewenste golfvorm in het venster verschijnt, klikt u op OK of Toepassen om deze te beginnen gebruiken.

Knoppen op de werkbalk

Importeer uit een kanaal. Dit opent het dialoogvenster Importeren uit een kanaal, waarmee u een golfvorm kunt kopiëren uit de oscilloscoop in het venster voor willekeurige golfvormen.

Importeren. Dit geeft een dialoogvenster Openen weer om een willekeurige golfvorm te importeren uit een tekstbestand.

Exporteren. Dit geeft een dialoogvenster Opslaan als weer om de willekeurige golfvorm op te slaan als een tekstbestand.

Samples. Het aantal monsters in de willekeurige golfvorm. Elk monster represents de signaalwaarde op een bepaald moment in de tijd en de monsters zijn gelijk verdeeld in de tijd. Als er bijvoorbeeld 1024 monsters zijn en de willekeurige golfvormgenerator is ingesteld om af te spelen op 1 kHz, dan vertegenwoordigt elk monster (1/1 kHz ÷ 1024) of ongeveer 0,98 microseconden.

Bitstroom. Hiermee tekent u een reeks van bits volgens binaire of hexadecimale gegevens die u opgeeft. De logische hoge en lage waarden zijn instelbaar.

Alles wissen. Hiermee wordt de willekeurige golfvorm verwijderd.

Normaliseren. Past de golfvorm verticaal aan zodat deze het volledige bereik [-1, + 1] inneemt.

Ongedaan maken en Opnieuw uitvoeren. Met de knop Ongedaan maken wordt de laatste aangebrachte wijziging in de willekeurige golfvorm omgekeerd. Met de knop Opnieuw uitvoeren keert u de laatste actie van de knop Ongedaan maken om.

Zoomen. Om in- of uit te zoomen op de tijdas, klikt u op de "+" of "-" zoomknop en vervolgens op het gebied van de golfvorm. Klik op de knop "100%" om de tijdas terug te zetten naar de oorspronkelijke grootte.

Golfvorminstellingen

Standaard golfvormen. Tekenen standaard golfvormen met de instellingen die zijn opgegeven in de numerieke besturingselementen onder de werkbalk. De huidige golfvorm wordt gewist.

Minimum. Als één van de knoppen voor Standaard golfvormen is ingedrukt, dan wordt in dit besturingselement het minimale signaalniveau ingesteld.

Maximum. Als één van de knoppen voor Standaard golfvormen is ingedrukt, dan wordt in dit besturingselement het maximale signaalniveau ingesteld.
Bedrijfscyclus. Als een vierkante, driehoekige, stijgende of dalende golfvorm is geselecteerd met behulp van een van de knoppen voor *standaard golfvormen*, dan kunt u hiermee de bedrijfscyclus instellen van het signaal. De bedrijfscyclus wordt gedefinieerd als de tijd dat het signaal boven nul staat, gedeeld door de totale cyclustijd. Een symmetrische vierkante of driehoekige golf heeft dus een bedrijfscyclus van 50%. Het verlagen van de bedrijfscyclus verkort het positieve deel van de cyclus en verlengt het negatieve deel. Een verhoging van de bedrijfscyclus doet het tegenovergestelde.

Andere knoppen

OK

Dit kopieert de golfvorm van de grafische editor in de willekeurige golfvormgenerator en keert terug naar het hoofdvenster van *PicoScope*.

Toepassen

Dit kopieert de golfvorm van de grafische editor in de willekeurige golfvormgenerator zonder het venster voor *Generator van willekeurige golfvormen* te verlaten.
7.7.4.1 Dialoogvenster Importeren uit een kanaal

Locatie: Venster Willekeurige golfvorm > Knop Importeren uit een kanaal

Doel: hiermee kunt u vastgelegde gegevens kopiëren uit een scoopkanaal naar het venster Willekeurige golfvorm

Kies een kanaal: u kunt de meest recente golfvorm importeren uit een beschikbaar kanaal.

Kies samples: standaard wordt de hele opname geïmporteerd. Hiermee kunt u een deel van de opname opgeven, tussen opgegeven monsternummers of tussen linialen. De deelverzameling zal worden aangepast aan het aantal monsters opgegeven in de instelling Samples in het venster Willekeurige golfvorm.
7.7.5 Menu demo-signalen

Locatie: start PicoScope zonder aangesloten oscilloscoop
> dialoogvenster Verbinden met apparaat
> selecteer "demo-apparaat"
> knop Signaalgenerator

Doel: hiermee kunt u testsignalen instellen om te experimenteren met PicoScope als er geen apparaat is aangesloten

Als u klikt op de knop Signaalgenerator, dan verschijnt er een vervolgkeuzelijst van alle beschikbare kanalen in het demo-apparaat, zoals dit:

Klik op een van de kanalen om het dialoogvenster voor demo-signalen te openen. Hier kunt u een signaal instellen van dat kanaal.
7.7.6 Dialoogvenster demo-signalen

Locatie: start PicoScope zonder aangesloten oscilloscoop
 > Dialoogvenster Verbinden met apparaat
 > selecteer "DEMO"-apparaat
 > knop Signaalgenerator
 > kies een kanaal

Doel: hiermee stelt u één kanaal in van de "demo"-signaalbron. Dit is een functie van PicoScope waarmee verschillende testsignalen worden gemaakt om een oscilloscoop te simuleren.

- **Signaal Aan:** schakel dit vakje in om de demo-signaalbron in te schakelen.
- **Golftype:** selecteer uit een lijst van standaard golftypen.
- **Willekeurig:** dit opent het bewerken van Willekeurige golfvormen.
- **Frequentie:** typ uw gewenste frequentie in hertz of gebruik de knoppen.
- **Amplitude:** typ uw gewenste amplitude in volt of gebruik de knoppen.
- **Offset:** voer een getal in om een DC-offset toe te voegen aan het demo-signal. De demo-signalen hebben standaard een gemiddelde waarde van nul volt.
7.8 Werk balk Stop/start
Met de **Start/Stop werkbalk** kunt u de **oscilloscoop** stoppen en starten. Klik eender waar op de werkbalk of druk op de start/stop-toets op het toetsenbord (standaard is dit de spatiebalk) om de bemonstering te starten of stoppen.

![Start-pictogram.](image)
Gemarkeerd als de oscilloscoop aan het bemonsteren is.

![Stop-pictogram.](image)
Gemarkeerd als de oscilloscoop gestopt is.

Deze werkbalk bevindt zich normaal onderaan het programmavenster, maar kan worden verplaatst naar de bovenzijde met **Gereedschap > Voorkeuren > Opties > Onderste werk balk bovenaan.**
7.9 Werkbalk activering

De **werkbalk Activering** vertelt het apparaat wanneer het gegevens moet beginnen vast te leggen. Zie ook: **Activering**.

De lijst van beschikbare modi varieert afhankelijk van het type oscilloscoop dat wordt gebruikt.

Geen: PicoScope verwerft golfvormen herhaaldelijk zonder te wachten op een signaal om te activeren.

Auto: PicoScope wacht op een activeringsgebeurtenis voordat het gegevens begint vast te leggen. Als er geen activeringsgebeurtenis plaatsvindt binnen een redelijke tijd, dan worden er toch gegevens vastgelegd. Dit proces wordt herhaald totdat u klikt op de **Stopknop**. Met de "Automatische" modus wordt het activeringsniveau niet automatisch ingesteld.

Herhaal: PicoScope wacht voor onbepaalde duur op een activeringsgebeurtenis voordat er gegevens worden weergegeven. Dit proces wordt herhaald totdat u klikt op de **Stopknop**. Als er geen activeringsgebeurtenis plaatsvindt, dan geeft PicoScope niets weer.

Enkel: PicoScope wacht een keer op een activeringsgebeurtenis en stopt vervolgens de bemonstering. Om PicoScope dit proces te doen herhalen, klikt u op de **Start**-knop. De **Enkele** activering is het enige type waarmee een opname het hele buffergeheugen mag vullen.

Snel: PicoScope geeft het apparaat de opdracht om een reeks golfvormen te verwerven met de minimale mogelijke vertraging ertussen. De weergave wordt niet bijgewerkt totdat de laatste golfvorm in de reeks is vastgelegd. Als de bewerking voltooid is, kunt u stapsgewijs door de golfvormen gaan met behulp van de **Buffernavigatiewerkbalk**.

Opmerking: snelle activering is alleen beschikbaar op bepaalde apparaten (Zie tabel met apparaateigenschappen) en op de snelste tijdbasissen.

ETS: **Equivalent Time Sampling (Gelijke tijd bemonstering)**. PicoScope legt veel cycli van een repetitief signaal vast. Vervolgens combineert het de resultaten om een enkele golfvorm te produceren met een hogere tijdsresolutie dan mogelijk is met een enkele opname. Voor nauwkeurige resultaten moet het signaal perfect repetitief zijn en de activering stabiel. ETS is niet beschikbaar op oscilloscopen met gemengd-signaal als digitale kanalen ingeschakeld zijn.

Als u ETS kiest wanneer een **Geavanceerde activering** is ingeschakeld, dan zal het type activering terugkeren naar **Enkel** en wordt de knop **Geavanceerde activering** uitgeschakeld.
Geavanceerde activering. Klik hierop om het dialoogvenster Geavanceerde activering, te openen. Hier kunt u nog andere soorten activering instellen. Als deze knop is uitgeschakeld, dan is dit omdat Geen of ETS is geselecteerd in de activeringsmodus of omdat uw apparaat geen ondersteuning biedt voor deze modus. Om de knop Geavanceerde activering in te schakelen, stelt u de instelling in op een andere modus, zoals Automatisch, Herhaal of Enkel.

Activeringsbron. Dit is het kanaal dat PicoScope controleert voor de activering voorwaarde.

Stijgende flank. Klik hierop om te activeren op de stijgende rand van de golvenform.

Dalende flank. Klik hierop om te activeren op de dalende rand van de golvenform.

Activeringsniveau. Stel het niveau in voor de activering. U kunt ook het activeringsniveau instellen door de activeringsmarker omhoog of omlaag te slepen op het scherm.

Pre-activering tijd (0% tot 100%). Met deze parameter stelt u in hoeveel van de golvenform wordt weergegeven vóór het activeringspunt. Het is standaard ingesteld op 50%, waardoor de activeringsmarker in het midden van het scherm komt. U kunt deze parameter ook instellen door de activeringsmarker naar links of naar rechts te slepen.

Post-activering vertraging inschakelen. Klik op deze knop om vertraging na de activering in te schakelen (zie volgende punt).

Post-activering vertraging. De post-activering vertraging is de tijd die PicoScope wacht na het activeringspunt vóór de bemonstering begint. U kunt deze parameter ook wijzigen door de activeringsmarker te verschuiven terwijl de knop post-activering vertraging is ingeschakeld. Terwijl u de marker versleept, ziet u de post-activering pijl kort weergegeven. Om deze instelling te kunnen gebruiken, moet u er eerst voor zorgen dat de knop post-activering vertraging is ingeschakeld.

Zie het naslagonderwerp “Activeringstiming” voor informatie over het effect van de instellingen Post-activering vertraging en Pre-activering vertraging.

Snelle vastleggingen. In de Snelle activeringsmodus is dit het aantal vast te leggen golvenformen in een reeks. Ze worden vastgelegd met de minimaal mogelijk dode tijd ertussen.

Deze werkbalk bevindt zich normaal onderaan het programvenster, maar kan worden verplaatst naar de bovenzijde met de instelling Onderste werkbalk bovenaan in Gereedschap > Voorkeuren > Opties.
Dialoogvenster geavanceerde activering

Locatie: Werkbalk activering > Knop geavanceerde activering

Doel: hiermee kunt u meer complexe types activering instellen dan eenvoudige flank-activeringingen

Lijst van types geavanceerde activeringen. Deze lijst bevat alle beschikbare types geavanceerde activeringingen. Klik op de voorwaarde die u nodig hebt en er zal een diagram en beschrijving verschijnen aan de rechterkant van het dialoogvenster.

Als ETS-activering is ingeschakeld in de Werkbalk Activering, dan zal de selectie van een ander type activering dan Enkele flank, de ETS-modus uitschakelen.

7.9.2 Types geavanceerde activering.

De **geavanceerde types activering** kunnen worden ingeschakeld in het **dialoogvenster Geavanceerde activering**.

Voor alle typen activering, behalve **digitaal**, is de eerste stap het selecteren van het signaal dat de scoop moet gebruiken voor de activering. Stel daarom de **Bron** in op A, B, Ext of AuxIO. Deze namen komen overeen met de BNC-ingangsansluitingen op het apparaat. Kies vervolgens een van de types activering hieronder.

Eenvoudige flank. Dit type geeft dezelfde **Stijgende** en **Dalende** flankactiveringen die beschikbaar zijn via de **werkbalk Activering**. Het is opgenomen in dit dialoogvenster als een alternatieve manier om de Enkele flank-activering in te stellen.

U kunt de **drempel** voor de activering instellen in het **dialoogvenster Geavanceerde activering** of als alternatief kunt u de **Activeringsmarker** verschuiven in het scoopgezichtspunt.

Dit is de enige activering die compatibel is met de **ETS**-modus.

Geavanceerde flank. Dit type activering voegt een extra **Stijgend of dalend** flankactivering en **Hysterese** toe aan de Enkele flank-activering. De optie **Stijgend of Dalend** activeert op beide flanken van een golfvorm. Dit is nuttig voor het controleren van pulsen op beide polariteiten tegelijk. **Hysterese** wordt beschreven in een afzonderlijk onderwerp.

Venster. Dit type activering detecteert wanneer het signaal een opgegeven spanningsvenster binnenkomt of buitengaat. De instelling **Richting** geeft aan of de activering het signaal moet detecteren wanneer het het venster binnenkomt of buitengaat, of allebei. **Drempel 1** en **Drempel 2** zijn de bovenste en onderste spanningsgrenzen van het venster. De volgorde waarin u de twee spanningen opgeeft maakt niet uit. **Hysterese** kan worden ingesteld om het aantal valse activeringen te verminderen op signalen met veel ruis. Dit wordt beschreven in een afzonderlijk onderwerp.

Pulsbreedte. Dit type activering detecteert pulsen van een opgegeven breedte.

Stel eerst de **Pulsrichting** in op **Positieve puls** of **Negatieve puls** volgens de polariteit van de puls waarin u geïnteresseerd bent.

Stel vervolgens een van de vier opties voor **Toestand** in:

- **Groter dan** activeert bij pulsen breder dan de opgegeven tijd.
- **Minder dan** activeert bij pulsen die smaller zijn (nuttig voor het vinden van fouten).
- **Binnen tijdsbereik** activeert bij pulsen die breder zijn dan **Tijd 1** maar niet breder dan **Tijd 2** (nuttig voor het vinden van pulsen die voldoen aan een specificatie).
- **Buiten tijdsbereik** doet het tegenovergestelde: het activeert bij pulsen die smaller dan **Tijd 1** of breder dan **Tijd 2** zijn (nuttig voor het vinden van pulsen die een specificatie overtreden).

Stel vervolgens de **Drempel** in in volt of andere meeteenheden of versleep de **Activeringsmarker** op het scoopgezichtspunt.
Ten laatste stelt u Tijd 1 (en Tijd 2 indien aanwezig) in om de pulsbreedte te definiëren.

Interval. Met dit type kunt u zoeken naar twee opeenvolgende flanken van dezelfde polariteit die gescheiden zijn door een opgegeven tijdsinterval.

Stel eerst de *Eerste flank* in op *Stijgend* of *Dalend* volgens de polariteit van de flanken waarin u geïnteresseerd bent.

Selecteer vervolgens een van de vier opties voor **Toestand:**

- **Groter dan** activeert als de tweede flank later plaatsvindt dan Tijd 1 na de eerste flank (handig voor het opsporen van ontbrekende gebeurtenissen).
- **Minder dan** activeert als de tweede flank vroeger plaatsvindt dan Tijd 1 na de eerste flank (handig voor het opsporen van valse flanken en tijdsuitovertredingen).
- **Binnen tijdsbereik** activeert als de tweede flank later is dan Tijd 1 na de eerste flank en eerder dan Tijd 2 (nuttig voor het vinden van geldige flanken).
- **Buiten tijdsbereik** activeert als de tweede flank vroeger is dan Tijd 1 na de eerste flank of later dan Tijd 2 (nuttig voor het vinden van valse flanken).

Ten laatste stelt u Tijd 1 (en Tijd 2 indien aanwezig) in om het tijdsinterval te definiëren.

Venster pulsbreedte. Dit is een combinatie van de vensteractivering en de pulsbreedte-activering. Het detecteert wanneer het signaal een opgegeven spanningsbereik binnenkomt of buitengaat gedurende een opgegeven tijdsperiode.

Uitvalniveau. Dit detecteert een flank gevolgd door een opgegeven tijd zonder flanken. Dit is nuttig om te activeren op het einde van een pulsreeks.

Venster uitval. Dit is een combinatie van de vensteractivering en de uitval-activering. Het detecteert wanneer het signaal een opgegeven spanningsbereik binnenkomt en daar gedurende een bepaalde tijd blijft. Dit is handig om te detecteren of een signaal op een bepaalde spanning blijft vastzitten.

Zwak. Detecteert een puls die een drempel overschrijdt en vervolgens onder dezelfde drempelwaarde daalt zonder de tweede drempelwaarde te overschrijden. Dit wordt meestal gebruikt voor het vinden van pulsen die geen geldig logisch niveau bereiken.

Digitaal. (alleen MSO-apparaten) Activeert op een combinatie van de status van de digitale ingangen en een overgang (flank) op één digitale ingang. Zie Digitale activering.

Logisch. Dit detecteert een logische combinatie van ingangen van de scoop. De voorwaarden die kunnen worden toegespast op elke ingang variëren: analoge ingangen kunnen flank-, niveau- of venster-gekwalificeerd zijn; EXT en D15...D0 (indien aanwezig) zijn niveau-gekwalificeerd met een variabele drempel; en AUXIO is niveau-gekwalificeerd met een vaste TTL-drempelwaarde. Zie Logische activering.
7.9.2.1 Hysterese

Hysterese is een functie van de geavanceerde types activering in PicoScope 6 waarmee valse activering wordt verminderd op signalen met veel ruis. Als hysterese is ingeschakeld, dan wordt een tweede drempelspanning gebruikt naast de hoofddrempel voor activering. De activering vindt alleen plaats als het signaal de twee drempels overschrijdt in de juiste volgorde. De eerste drempel stelt de activering in en de tweede drempel veroorzaakt de activering. Een voorbeeld zal helpen om te illustreren hoe dit werkt.

Signaal met veel ruis met een enkele drempel

Bekijk het signaal met heel veel ruis hierboven. Het is moeilijk om betrouwbaar te activeren op dit signaal met een normale stijgende flank-activering omdat het signaal de activeringsdrempel, de rode lijn in deze afbeelding, meerdere keren overschrijdt in één cyclus. Als we inzoomen op de gemanageerde delen van het signaal, zullen we zien hoe hysterese kan helpen.

Signaal met veel ruis met hysteresedrempel

In deze ingezoomde weergave is de oorspronkelijke drempel de onderste rode lijn. De bovenste rode lijn is de tweede drempel gebruikt door de hysterese-activering.

Het signaal stijgt op (1) en (2) over de onderste drempel en stelt hierdoor de activering in, zonder deze daadwerkelijk uit te voeren. Op (3) kruist het signaal de bovenste drempel en wordt de activering uitgevoerd. Op de dalende flank van het signaal, op (4) en (5), veroorzaken stijgende flanken van ruispulsen dat het signaal de bovenste en onderste drempels kruisen, maar in de verkeerde volgorde. De activering wordt in dit geval niet ingesteld en dus ook niet gestart. De activering wordt daarom slechts op één welbepaalde punt in de cyclus (3) uitgevoerd, ondanks de ruis in het signaal.

Hysterese is standaard ingeschakeld voor alle types geavanceerde activering. In de instelling Hysteresis in het dialoogvenster Geavanceerde activering kunt u de hysterese-spanning veranderen als een percentage van de volledige schaal. De activeringsmarker toont de grootte van het hysteresevenster.
7.9.2.2 Dialogvenster Digitale activering

Locatie: Dialogvenster Geavanceerde activering > Digitaal en Logisch knoppen

Doel: stelt activering op digitale ingangen in

Toepasbaarheid: alleen MSO-apparaten

Patroontabel
Hier worden alle beschikbare ingangen gegeven zoals geselecteerd in het dialogvenster Digitale instellingen. Elke ingang kan worden gecontroleerd op een laag of hoog niveau of een stijgende of dalende flank, of worden genegeerd. Er kan een willekeurig aantal niveaus worden opgegeven, maar niet meer dan één overgang (flank).

<table>
<thead>
<tr>
<th>D7</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>negeren</td>
</tr>
<tr>
<td>0</td>
<td>laag niveau</td>
</tr>
<tr>
<td>1</td>
<td>hoog niveau</td>
</tr>
<tr>
<td>R</td>
<td>stijgende flank</td>
</tr>
<tr>
<td>F</td>
<td>dalende flank</td>
</tr>
</tbody>
</table>

Patroonoverzicht
Dit gedeelte bevat dezelfde instellingen als de patroontabel maar in een beknoptere notatie.

De numerieke indeling te gebruiken voor deze sectie: Binaire af Hex (a decimaal). Het volledige activeringspatroon en overgang. In binaire modus worden de bits als volgt aangeduid:

<table>
<thead>
<tr>
<th>D7</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>negeren</td>
</tr>
<tr>
<td>0</td>
<td>binaire 0</td>
</tr>
<tr>
<td>1</td>
<td>binaire 1</td>
</tr>
<tr>
<td>R</td>
<td>stijgende flank</td>
</tr>
<tr>
<td>F</td>
<td>dalende flank</td>
</tr>
</tbody>
</table>
7.9.2.3 Dialoogvenster Logische activering

Locatie: **dialoogvenster Logische activering** > knop Logisch

Doel: hiermee stelt u activering in op een combinatie van ingangen

Toepasbaarheid: alle apparaten met meer dan één actieve ingang

Ingangsinstellingen

Er zijn een aantal instellingen voor elke actieve ingang van de oscilloscoop. De selectie van ingangen is afhankelijk van het gebruikte model oscilloscoop. De selectie van de instellingen (dremels, hysterese, venstermodus, enzovoort) voor elke ingang is ook afhankelijk van de hardwaremogelijkheden van de oscilloscoop.

- **A** Kanaal A
- **B** Kanaal B
- **C** Kanaal C
- **D** Kanaal D
- **Ext** Ingang EXT (indien aanwezig)
- **AuxO** Ingang AUX (indien aanwezig)
- **Digital** Digitale ingangen (alleen gemengd-signaal oscilloscopen). De instellingen hier zijn dezelfde als diegene in het dialoogvenster Digitale activering.

Schakel dit selectievakje in als u de relevante ingang wenst op te nemen in de voorwaarde van de logische activering. Als het selectievakje niet is ingeschakeld, zal de ingang worden genegeerd door de logische activering.
Logische instelling

Hiermee geeft u de Booleaanse bewerking om de ingangsvoorwaarden te combineren. Alleen ingangen met het vakje 'Gebruikt' ingeschakeld (zie hierboven) worden opgenomen in de logische activering.

AND: er moet worden voldaan aan alle ingangsvoorwaarden voor activering

NAND: er moet aan geen van de ingangsvoorwaarden worden voldaan voor activering

OR: er moet worden voldaan aan één of meer van de ingangsvoorwaarden voor activering

NOR: er moet aan geen van de ingangsvoorwaarden worden voldaan voor activering

XOR: er moet aan een oneven aantal ingangsvoorwaarden worden voldaan voor activering

XNOR: er moet aan een even aantal ingangsvoorwaarden worden voldaan voor activering
7.10 Werkbalk voor zoomen en bladeren

Met de werk balk voor zoomen en bladeren kunt u rond een scoopgezichtspunt of spectrumgezichtspunt navigeren. Elke knop heeft een sneltoets, zoals hieronder vermeld.

- **Ctrl+S of Esc** Normale selectie. Hiermee herstelt u de aanwijzer terug naar de normale weergave. U kunt deze aanwijzer gebruiken om te klicken op knoppen, lijnen te verslepen en andere besturingselementen te gebruiken in het PicoScope-venster.

- **Ctrl+U** Zoom ongedaan maken. Hiermee keert het gezichtspunt terug naar de vorige zoominstelling.
7.10.1 Zoomoverzicht

Als u inzoomt met behulp van de werk balk Zoomen en bladeren, zou het venster Zoomoverzicht moeten verschijnen*:

Het Zoomoverzicht bevat de volledige golfvormen op alle ingeschakelde kanalen. De rechthoek geeft het gebied aan dat zichtbaar is in de huidige weergave.

U kunt rondkijken op de golfvorm door de rechthoek te verschuiven.

U kunt de zoomfactor ook aanpassen met de randen om de grootte van de rechthoek te veranderen.

Knop Minimaliseren: verklein het venster Zoomoverzicht zonder invloed op de zoominstellingen.

Knop Sluiten: sluit het venster Zoomoverzicht venster en zet de zoomfactor terug op 100%.

*Opmerking: als het Zoomoverzicht niet wordt weergegeven, is de functie mogelijk uitgeschakeld. Controleer de optie Zoomoverzicht in Gereedschap > Voorkeuren > Opties.
8 Hoe...
In dit hoofdstuk worden enkele veelvoorkomende taken uiteengezet.

- Omschakelen naar een ander apparaat
- Liniaal gebruiken om een signaal te meten
- Een tijdsverschil meten
- Een gezichtspunt verplaatsen
- De schaalverdeling en offset instellen voor een signaal
- Het spectrumgezichtspunt instellen
- Een fout vinden met behulp van de persistentiemodus
- Een Maskerlimiettest instellen
- Opslaan bij activering

8.1 Omschakelen naar een ander apparaat
Koppel het oude apparaat los.
Annuleer het dialoogvenster Controleer USB-kabel.
Sluit het nieuwe apparaat aan.
PicoScope zal het nieuwe apparaat detecteren en het beginnen gebruiken.
8.2 Linialen gebruiken om een signaal te meten

Met behulp van een enkele liniaal voor signaal-aarde-metingen

- Zoek in de **werk balk Kanalen** de kleurcode voor het **kanaal** dat u wenst te meten:

 ![Image](image1)

 A Auto DC

- Zoek de liniaalknop (het kleine gekleurde vierkantje in de linkerbovenhoek of rechterbovenhoek van het **scoopgezichtspunt** of **spectrumgezichtspunt**) met deze kleur:

 ![Image](image2)

 Sleep het vierkantje van de liniaal naar beneden. Er wordt een signaalliniaal (horizontaal onderbroken lijn) weergegeven in het gezichtspunt. Laat het liniaalvierkantje los als de liniaal staat waar u deze wilt hebben.

 ![Image](image3)

- Kijk naar de **liniaallegenda** (de kleine tabel onderaan in de weergave). Het zou een rij moeten bevatten aangeduid door een klein gekleurd vierkantje in de kleur van uw liniaalvierkantje. De eerste kolom toont het signaalniveau van de liniaal.

 ![Image](image4)

Met behulp van twee linialen voor verschilmetingen

- Volg de bovenstaande stappen voor een enkele liniaal.
- Sleep het tweede liniaalvierkantje van dezelfde kleur naar beneden tot de liniaal op het te meten signaalniveau staat.
- Kijk opnieuw naar de **liniaallegenda**. De tweede kolom toont nu het signaalniveau van de tweede liniaal en de derde kolom toont het verschil tussen de twee linialen.

 ![Image](image5)

 1 2 Δ
 58.0mV -483.0mV 1.078V
8.3 Een tijdsverschil meten

Zoek de knop van de tijdliniaal (het witte vierkantje in de linkeronderhoek van het scoopgezichtspunt).

Sleep het vierkantje van de liniaal naar rechts. Er verschijnt een tijdliniaal (verticaal onderbroken lijn) op het scoopgezichtspunt. Laat het liniaalvierkantje los als de liniaal op de tijd staat die u wenst te gebruiken als referentie.

Sleep het tweede witte liniaalvierkantje naar rechts totdat de liniaal op het te meten tijdstip staat.

Kijk naar de liniaallegenda (de kleine tabel in het scoopgezichtspunt). Het moet een rij hebben aangeduid door een wit vierkantje. De eerste twee kolommen tonen de tijden van de twee linialen en in de derde kolom ziet u het tijdsverschil.

De frequentielegenda toont 1/Δ, waarbij Δ het tijdsverschil is.

U kunt een vergelijkbare methode gebruiken om een frequentieverschil te meten op een spectrumgezichtspunt.
8.4 Een gezichtspunt verplaatsen

U kunt een gezichtspunt gemakkelijk verslepen van de ene viewport naar de andere. In dit voorbeeld ziet u vier viewports met scoopgezichtspunten genaamd "Scope 1" tot "Scope 4". Veronderstel dat u "Scope 4" wenst te verplaatsen naar de viewport linksboven.

1. Klik op het tabblad met de naam van het gezichtspunt "Scope 4" en houd de muisknop ingedrukt.

2. Sleep de muisaanwijzer naar de nieuwe locatie naast het tabblad met de naam "Scope 1".

3. Laat de muisknop los en het gezichtspunt wordt verplaatst naar de nieuwe locatie.
8.5 De schaalverdeling en offset van een signaal instellen

PicoScope biedt verschillende manieren om de grootte en positie van een signaal te veranderen tijdens of na het vastleggen. Deze methoden gelden zowel voor scoopgezichtspunten als voor spectrumgezichtspunten. Ze veranderen de opgeslagen gegevens niet, alleen de manier waarin deze worden weergegeven. Deze opties worden gegeven in aanvulling op de functie voor analoge offset van sommige oscilloscopen (Zie tabel met apparaateigenschappen).

Werkbalk voor zoomen en bladeren

Dit is meestal de snelste manier om meer details te zien van uw signalen. De algemene hulpmiddelen voor zoomen en bladeren verplaatsen alle signalen tegelijkertijd en zijn te vinden op de werkbalk voor zoomen en bladeren.

Als een gezichtspunt is ingezoomd worden er verticale en horizontale schuifbalken weergegeven waarmee u de signalen als een groep kunt verplaatsen. U kunt ook het handje gebruiken om rond de grafiek te kijken.

Assen automatisch ordenen:

Klik met de rechtermuisknop op het scoop- of spectrumgezichtspunt en selecteer Assen automatisch ordenen:
PicoScope stelt de schaalverdeling en offset automatisch in om deze te laten passen op de weergave zonder overlappendingen. Dit is de snelste manier om het scoopgezichtspunt te schikken:

Schaalverdeling en offset as

Gebruik deze hulpmiddelen als **Assen automatisch ordenen** (zie hierboven) niet de gewenste resultaten geeft. Hiermee kunt u afzonderlijk kanalen plaatsen in het gezichtspunt (in tegenstelling tot de algemene hulpmiddelen voor zoomen en bladeren. Deze worden tegelijkertijd toegepast op alle kanalen).

Klik op de knop voor schaalverdeling onderaan de as die u wenst te wijzigen en de instellingen voor **asschaalverdeling** zullen verschijnen. Om de offset aan te passen zonder gebruik te maken van de instellingen voor asschaalverdeling, klikt u op de verticale as en sleept u deze omhoog of omlaag.

Hoe is dit verschillend van het schalen van mijn gegevens met een aangepaste probe?

U kunt een **aangepaste probe** maken om schaalverdeling toe te passen op de onbewerkte gegevens. Een aangepaste probe kan de schaalverdeling en positie van gegevens in de grafiek wijzigen, maar dit omvat een aantal belangrijke verschillen ten opzichte van de andere methoden voor schaalverdeling.

- Schaalverdeling met aangepaste probes is een permanente transformatie. De schaal wordt toegepast als de golfvorm wordt vastgelegd en dit kan daarna niet meer worden gewijzigd.
- De werkelijke gegevenswaarden zelf worden gewijzigd. Hierdoor kunnen de grafiekassen het oorspronkelijke spanningsbereik van het apparaat niet meer weergeven.
- Schaalverdeling met aangepaste probes kan niet-lineair zijn en zo de vorm van het signaal wijzigen.

Aangepaste probes zijn handig als u de kenmerken van een fysieke probe of transducer wenst te representeren die u op uw apparaat aansluit. Alle hulpmiddelen voor zoomen, bladeren, schaalverdeling en offset blijven van toepassing op gegevens die werden geschaald met een aangepaste probe op precies dezelfde manier zoals deze van toepassing zouden zijn op onbewerkte gegevens.
8.6 Het spectrumgezichtspunt instellen

Een spectrumgezichtspunt maken

Zorg er eerst voor dat de activeringsmodus niet is ingesteld op ETS. Anders is het niet mogelijk om een spectrumgezichtspunt te openen in de ETS-activeringsmodus.

Er zijn drie manieren om een spectrumgezichtspunt te openen:

1. Klik op de knop **Spectrummodus** in de werkbalk Vastleggingsinstellingen. Wij adviseren deze methode aan om de beste spectrumanalyse te verkrijgen van uw scoop. In Spectrummodus kunt u nog steeds een spectrumgezichtspunt openen om uw gegevens in het tijdsdomein te zien, maar PicoScope optimaliseert de instellingen voor het spectrumgezichtspunt.

Met deze methode wordt een spectrumgezichtspunt geopend in de momenteel geselecteerde modus, ongeacht of dit Scoop- of Spectrummodus. Voor de beste resultaten adviseren wij dat u omschakelt naar Spectrummodus, zoals beschreven in de bovenstaande methode.

Het spectrumgezichtspunt configureren

Zie het dialoogvenster **spectrumgezichtspunt**.

De brongegevens selecteren

PicoScope kan een spectrumgezichtspunt produceren op basis van live of opgeslagen gegevens. Als PicoScope wordt uitgevoerd (de **Start** -knop is ingedrukt), dan geeft het spectrumgezichtspunt live gegevens weer. Als PicoScope gestopt is (de **Stop** -knop ingedrukt), dan vertegenwoordigt het spectrumgezichtspunt gegevens die zijn opgeslagen in de geselecteerde pagina van de golfvormbuffer. Als PicoScope gestopt is, kunt u de **bufferinstellingen** gebruiken om door de buffer te bladeren en het spectrumgezichtspunt zal opnieuw worden berekend van de geselecteerde golfvorm.
8.7 Een fout vinden met persistentiemodus

Persistentiemodus helpt u zeldzame gebeurtenissen te vinden die verborgen liggen in repetitieve golfvormen. In de normale scoopmodus kan een dergelijke gebeurtenis een fractie van een seconde op het scherm verschijnen, te snel voor u om op de spatiebalk te drukken om het op het scherm te bevriezen. De persistentiemodus houdt de gebeurtenis gedurende een vooraf ingestelde tijd op het scherm, zodat u de activeringsopties kunt instellen om het op een meer betrouwbare manier vast te leggen.

Stapsgewijze handleiding

1. Stel het bereik in om te activeren op een repetitieve golfvorm zoals diegene hieronder. We vermoeden dat er occasionele fouten zijn maar we zien nog niets verkeerd. Daarom gebruiken we persistentiemodus om dit verder te onderzoeken. Klik op de **knop Persistentiemodus** om verder te gaan.
Het oorspronkelijke scoopgezichtspunt wordt vervangen door een persistentiegezichtspunt, zoals hieronder getoond. We kunnen onmiddellijk drie pulsen met verschillende vormen zien. Op dit moment hebben we de instelling **Saturatie** in **persistentie-opties** verhoogd om de verschillende golfvormen gemakkelijk te onderscheiden.
Nu dat we enkele fouten hebben gevonden, stellen we de **Saturatie** in op het minimum. Klik op de knop **persistentie-opties** om het **dialoogvenster persistentie-opties** te openen. Vervolgens gebruiken we de schuifregelaar om de satutatie aan te passen. Het scherm verschijnt als hieronder.

De golfvormen zijn nu donkerder, maar hebben een breder scala kleuren en tinten. De vaakst voorkomende golfvorm wordt weergegeven in het rood. Dit is de normale vorm van de puls. Er wordt een tweede golfvorm getekend in lichtblauw om aan te tonen dat deze minder vaak voorkomt. Dit toont ons dat er een occasionele jitter van ongeveer 10 ns zit in de pulsbreedte. De derde golfvorm wordt getekend in donkerblauw omdat deze minder vaak voorkomt dan de andere twee. Deze golfvorm geeft aan dat er een occasionele zwakke puls van ongeveer 300 mV lager in amplitude is dan normaal.
De persistentiemodus heeft zijn werk gedaan. We hebben onze fouten gevonden en nu willen we ze in meer detail onderzoeken. De beste manier om dit te doen is om terug over te schakelen naar normale scoopmodus, zodat we Geavanceerde activering en automatische meting kunnen gebruiken, ingebouwd in PicoScope.

Klik op de knop Scoopmodus. Stel een geavanceerde pulsbreedte-activering in om te zoeken naar een puls breder dan 60 ns. PicoScope vindt vervolgens de zwakke puls meteen.

We kunnen nu automatische metingen toevoegen of de linialen verslepen om de zwakke puls in detail te onderzoeken.
8.8 Maskerlimiettesten instellen

1. Geef een stabiele golfvorm weer in een *scoopgezichtspunt*. Pas het spanningsbereik en de tijdbasis aan zodat de functie van belang het grootste deel van het scherm vult. In dit voorbeeld kijken we naar een repetitieve puls zoals kan worden gevonden op een gegevensbus.

2. Selecteer de opdracht *Gereedschap > Maskers* > *Maskers toevoegen.*
3. U zou nu het dialoogvenster *Maskerbibliotheek* moeten zien:

![Screen shot of the Mask Library dialog box](image)

Kanaal A is standaard ingeschakeld. U kunt dit wijzigen als u het masker wenst toe te passen op een ander kanaal.

4. Klik op de knop **Genereren** om het dialoogvenster *Masker genereren* te openen:

![Screen shot of the Mask Generate dialog box](image)
5. Accepteer de standaardinstellingen en klik op Genereren. Klik vervolgens op OK in het dialoogvenster Maskerbibliotheek om terug te keren naar het scoopgezichtspunt:

U hebt nu een masker getekend rond de oorspronkelijke golfvorm.

6. PicoScope stopt het vastleggen wanneer u het dialoogvenster Maskerbibliotheek verlaat. Druk op de spatiebalk om opnieuw te starten. Als een vastgelegde golfvorm niet in het masker past, worden de overtredende delen getekend in een contrasterende kleur. De tabel met metingen toont het aantal mislukkingen:

7. U hebt nu een werkende maskerlimiettest. Lees het onderwerp maskerlimiettest voor informatie over het bewerken, importeren en exporteren van maskers. Het is ook mogelijk om een maskerlimiettest in te stellen op een spectrum of XY-gezichtspunt.

Zie voor meer informatie over deze functie: Maskerlimiettesten.
8.9 Opslaan bij activering

Opslaan-bij-activering is slechts één van een aantal functies die mogelijk zijn met de **alarm** functie.

1. Stel PicoScope in om uw golfvorm weer te geven en schakel activering in:

![Diagram](image)

2. Selecteer **Gereedschap > Alarm**:

![Menu](image)
3. U zou nu het **dialoogvenster Alarmen** moeten zien:

4. Stel **Gebeurtenis** in op **Opnemen**:
5. Selecteer het eerste item in de lijst **Acties**, klik op **Bewerken** en wijzig de **Actie** in **Huidige buffer opslaan**:

6. Klik op de knop rechts van het vak **bestand** en voer de naam en locatie van het bestand in om op te slaan:
7. Zorg ervoor dat zowel het selectievakje **Huidige Buffer opslaan** als **Alarm inschakelen** ingeschakeld zijn:

9. Schakel het alarm uit als u er klaar mee bent, om te voorkomen dat er ongewenste bestanden worden aangemaakt.
9 Referentie

Hier kunt u gedetailleerde informatie vinden over de werking van PicoScope.

- Types metingen
- Spectrumvenster-functies
- Activering-timing
- Opdrachtregelsyntaxis
- Woordenlijst

9.1 Types metingen

Het dialoogvenster Meting bewerken geeft een selectie van metingen die PicoScope kan berekenen voor het geselecteerde gezichtspunt.
9.1.1 Scoopmetingen

AC RMS. De root mean square (RMS) waarde van de golfvorm min het DC gemiddelde. Dit is gelijkwaardig aan een rimpelingmeting.

Cyclustijd. PicoScope zal proberen een herhaald patroon in de golfvorm en de duur van een cyclus te meten.

DC Gemiddelde. De gemiddelde waarde van de golfvorm.

Bedrijfs cyclus. De hoeveelheid tijd die een signaal boven de gemiddelde waarde doorbrengt, uitgedrukt als een percentage van de signaalperiode. Een bedrijfscyclus van 50% betekent dat de hoge tijd gelijk is aan de lage tijd.

Dalingstempo. De snelheid waarmee het signaal daalt, in signaaleenheden per seconde. Klik op de knop **Geavanceerd** in het dialoogvenster **Meting toevoegen** of **Meting bewerken** om het signaalniveau op te geven voor de meting.

Frequentie. Het aantal cycli van de golfvorm per seconde.

Daaltijd. De tijd die het signaal nodig heeft om van de bovenste drempel te dalen naar de onderste drempel. Klik op de knop **Geavanceerd** in het dialoogvenster **Meting toevoegen** of **Meting bewerken** om het signaalniveau op te geven voor de meting.

Positieve pulsbreedte. De hoeveelheid tijd die het signaal doorbrengt boven de gemiddelde waarde.

Negatieve pulsbreedte. De hoeveelheid tijd die het signaal doorbrengt onder de gemiddelde waarde.

Maximum. Het hoogste niveau bereikt door het signaal.

Minimum. Het laagste niveau bereikt door het signaal.

Top-tot-top. Het verschil tussen **maximum** en **minimum**.

Stijgtijd. De tijd die het signaal nodig heeft om van de onderste drempel te stijgen naar de bovenste drempel. Klik op de knop **Geavanceerd** in het dialoogvenster **Meting toevoegen** of **Meting bewerken** om het signaalniveau op te geven voor de meting.

Stijgtempo. De snelheid waarmee het signaalniveau stijgt, in signaaleenheden per seconde. Klik op de knop **Geavanceerd** in het dialoogvenster **Meting toevoegen** of **Meting bewerken** om het signaalniveau op te geven voor de meting.

Ware RMS. De root mean square (RMS) waarde van de golfvorm, met inbegrip van de DC-component.

Maskerfouten. Een speciale meting dat het aantal mislukte golfvormen telt in maskerlimiettests. Deze meting wordt automatisch toegevoegd aan de tabel als u maskerlimiettests gebruikt, het is dus meestal niet nodig om dit handmatig te selecteren.
9.1.2 Spectrummetingen

Om spectrummeting toe te voegen, opent u een spectrumgezichtspunt en vervolgens klikt u op de knop Meting toevoegen. U kunt deze metingen gebruiken in scoopmodus of spectrummodus.

Frequentie op piek. De frequentie waarmee de pieksignaalwaarde wordt weergegeven.

Amplitude hoogste piek. De amplitude van de pieksignaalwaarde.

Gemiddelde amplitude hoogste piek. De amplitude van de pieksignaalwaarde gemiddeld over een aantal vastleggingen.

Totaal vermogen. Het vermogen van heel het signaal vastgelegd in het spectrumgezichtspunt, berekend door de vermogens op te tellen in alle spectrumbins.

Totale harmonische vervorming (THD). De verhouding van de som van harmonische krachten aan de fundamentele frequentie.

\[THD = 20 \log_{10} \left(\sqrt{\frac{V_2^2 + V_3^2 + V_4^2 + V_5^2 + V_6^2 + V_7^2}{V_I}} \right) \]

Totale harmonische vervorming plus ruis (THD+N). De verhouding van het harmonische vermogen plus ruis op het fundamentele vermogen. THD+N-waarden zijn altijd groter dan de THD-waarden van hetzelfde signaal.

\[THD + N = 20 \log_{10} \left(\frac{\text{sum of squares of RMS values excluding datum}}{\text{RMS value of datum}} \right) \]

Dynamisch bereik stoorsignalen (SFDR). Dit is de verhouding van de amplitude op het opgegeven punt (normaal gesproken de piekfrequentie) en de frequentiecomponent met de tweede grootste amplitude ("SFDR frequentie"). De component op de "SFDR-frequentie" is niet noodzakelijkerwijs een harmonische van de fundamentele frequentiecomponent. Het zou bijvoorbeeld een sterk, onafhankelijk ruisignaal kunnen zijn.

\[SINAD = 20 \log_{10} \left(\frac{\text{RMS value of datum}}{\sqrt{\text{sum of squares of all RMS components except datum}}} \right) \]

\[SNR = 20 \log_{10} \left(\frac{\text{RMS value of datum}}{\sqrt{\text{sum of squares of all values excluding datum and harmonics}}} \right) \]
Intermodulatie vervorming (IMD). Een meting van de vervorming veroorzaakt door de niet-lineaire vermenging van twee tonen. Als meerdere signalen worden geïnjecteerd in een apparaat, kan modulatie of niet-lineaire vermenging van deze twee signalen optreden. Voor ingangssignalen op frequenties f_1 en f_2, worden secundaire vervormingssignalen gevonden bij frequenties: $f_3 = (f_1 + f_2)$ en $f_4 = (f_1 - f_2)$.

IMD wordt uitgedrukt als de dB-verhouding van de RMS-som van de vervorming tot de RMS-som van de twee ingangstonen. IMD kan worden gemeten voor vervorming van willekeurige volgorde, maar meestal worden de secundaire vervormingen gebruikt. In het geval van secundaire vervorming, wordt de intermodulatievervorming gegeven door:

$$IMD = 20 \log_{10} \frac{F_3^2 + F_4^2}{F_1^2 + F_2^2}$$

waarbij

F3 en F4 de amplitudes zijn van de secundaire vervormingen (op frequenties f3 en f4 hierboven omschreven)

en

F1 en F2 de amplitudes zijn van de ingangstonen (op frequenties f1 en f2, zoals aangegeven door de frequentielinialen in het spectrumvenster).

Ter referentie, de tertiaire vervormingen liggen op frequenties $(2f_1 + f_2)$, $(2f_1 - f_2)$, $(f_1 + 2f_2)$ en $(f_1 - 2f_2)$.

Opmerking: Hanning of Blackman-vensters zijn aanbevolen omwille van hun lage ruis. Een FFT-grootte van 4096 of hoger is aanbevolen om gepaste spectrale resolutie te leveren voor de IMD-metingen.

Maskerfouten. Zie Maskerlimiettesten.
9.2 Types golfvormen signaalgenerator

De lijst met types golfvormen die beschikbaar zijn in het dialogvenster *signaalgenerator* varieert naargelang het type aangesloten oscilloscoop. De volledige lijst is als volgt:

- **Sinus**
 - Sinusgolf
- **Vierkant**
 - Blokgolf
- **Driehoek**
 - Symmetrische driehoeksgolf
- **Schans omhoog**
 - Stijgende zaagtand
- **Schans omlaag**
 - Dalende zaagtand
- **Sinc**
 - $\sin(x)/x$, afgekapt op de x-as
- **Gaussisch**
 - De 'klok-curve' van de normale verdeling, afgekapt op de x-as
- **HalfSine**
 - Een gerectificeerde sinusgolf
- **WhiteNoise**
 - Willekeurige monsters met de maximale vernieuwingsfrequentie van de AWG
- **PRBS**
 - Pseudo-willekeurige binaire reeks - een willekeurige reeks bits met verstelbare bitsnelheid
- **DCVoltage**
 - Constante spanning, regelbaar met behulp van de instelling *Offset*
- **Willekeurig**
 - Een golfvorm gemaakt met de generator voor willekeurige golfvormen
9.3 Spectrumvensterfuncties

Om een spectrumgezichtspunt te maken, legt PicoScope een blok bemonsterde gegevens vast over een eindige tijdsinterval en gebruikt vervolgens een Fast Fourier Transform om het spectrum te berekenen. Het algoritme gaat ten alle tijde uit van een signaalniveau van nul buiten de vastgelegde tijdsinterval. Meestal veroorzaakt deze veronderstelling scherpe overgangen op nul aan elk uiteinde van de gegevens. Deze overgangen hebben een effect op het berekende spectrum en veroorzaken ongewenste artefacten zoals rimpel en versterkingsfouten. Om deze artefacten te verminderen, kan het signaal geleidelijk worden vervaagd aan het begin en einde van het blok. Er zijn verschillende veelgebruikte “vensterfuncties”, die kunnen worden ingeengeroold met de gegevens om deze vervaging mogelijk te maken. Deze worden gekozen op basis van het soort signaal en het doel van de meting.

Met de instelling **Window Functie** in het **dialoogvenster Spectrum-opties** kunt u een van de standaard vensterfuncties selecteren voor spectrumanalyse. De volgende tabel toont enkele van de kwaliteitsfactoren om de functies te vergelijken.

<table>
<thead>
<tr>
<th>Venster</th>
<th>Belangrijkste piekbreedte (bins @ -3 dB)</th>
<th>Hoogste zijlus (dB)</th>
<th>Zijlstdemping (dB/octaaf)</th>
<th>Aantekeningen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blackman</td>
<td>1,68</td>
<td>-58</td>
<td>18</td>
<td>vaak gebruikt voor audiowerk</td>
</tr>
<tr>
<td>Gaussisch</td>
<td>1,33 tot 1,79</td>
<td>-42 tot -69</td>
<td>6</td>
<td>geeft de minimale tijd en frequentiefouten</td>
</tr>
<tr>
<td>Driehoekig</td>
<td>1,28</td>
<td>-27</td>
<td>12</td>
<td>ook wel Bartlett-venster genoemd</td>
</tr>
<tr>
<td>Hamming</td>
<td>1,30</td>
<td>-41,9</td>
<td>6</td>
<td>ook verhoogde sinuskwadraat genoemd; gebruikt in spraakanalyse</td>
</tr>
<tr>
<td>Hann</td>
<td>1,20 tot 1,86</td>
<td>-23 tot -47</td>
<td>12 tot 30</td>
<td>ook sinuskwadraat genoemd; gebruikt voor audio en trillingen</td>
</tr>
<tr>
<td>Blackman-Harris</td>
<td>1,90</td>
<td>-92</td>
<td>6</td>
<td>voor algemeen gebruik</td>
</tr>
<tr>
<td>Flattop</td>
<td>2,94</td>
<td>-44</td>
<td>6</td>
<td>te verwaarlozen doorlaatbandrimpel; hoofdzakelijk gebruikt voor kalibratie</td>
</tr>
<tr>
<td>Rechthoekig</td>
<td>0,89</td>
<td>-13,2</td>
<td>6</td>
<td>geen vervaging; maximale scherpte; gebruikt voor korte transiënten</td>
</tr>
</tbody>
</table>

Referentie180

9.4 Activeringstming (deel 1)

De instelling pre-activering en post-activering vertraging worden hieronder individueel beschreven in het hoofdstuk 'Werk balk activering', maar de interactie tussen de twee instellingen is ook belangrijk om te begrijpen. Hier is een screenshot van een scoopgezichtspunt met post-activering vertraging ingeschakeld:

Nota 1. Het referentiepunt voor de activering () ligt niet op de golfvorm. Dit komt omdat de post-activering vertraging is ingesteld op 200 µs, waardoor het referentiepunt op 200 µs vóór het referentiepunt, ergens buiten de linkerrand van het scoopgezichtspunt. De tijdas wordt uitgelijnd zodat het referentiepunt van de activering op 200 µs ligt.

Nota 2. De pre-activering vertraging is ingesteld op 25%, waardoor het referentiepunt van de activering verschijnt op 25% van de weg op het scoopgezichtspunt beginnende van links.

Nota 3. PicoScope beperkt de vertraging van activering-tot-referentiepunt op een veelvoud van de totale opnametijd. Zodra u deze limiet hebt bereikt, zal het programma u niet toestaan om de pre-activering vertraging te verhogen. Als u de post-activering vertraging verhoogt, zal PicoScope de pre-activering vertraging verlagen om te vermijden dat het totaal de limiet overschrijdt. Het veelvoud is normaal 100 in de meeste activeringsmodi, en 1 in ETS-modus.
9.5 Activeringstiming (deel 2)

In “Activeringstiming (deel 1)” werden de concepten geïntroduceerd van pre-activering vertraging en de post-activering vertraging. De onderstaande tekening laat zien hoe ze gerelateerd zijn.

De pre-activering vertraging plaatst het scoopgezichtspunt ten opzichte van het referentiepunt. Zo kunt u kiezen hoeveel van de golfvorm voor het referentiepunt moet staan, en hoeveel erna.

De post-activering vertraging is net als de vertraagde activering van een conventionele oscilloscoop. PicoScope wacht deze tijd na de activeringsgebeurtenis alvorens het referentiepunt te tekenen. Scoopapparaten hebben een limiet voor het aantal bemonsteringsintervallen die tussen de activeringsgebeurtenis en het einde van de opname kunnen voorkomen. De software kan de pre-activering vertraging aanpassen om binnen deze limiet te blijven.

Tip: als u een post-activering vertraging hebt ingesteld, kunt u klikken op de knop voor post-activering vertraging terwijl de scoop werkt om te schakelen tussen het bekijken van de activeringsgebeurtenis en het referentiepunt.
9.6 Tabel met apparaateigenschappen

Voor sommige functies van PicoScope 6 is speciale hardware vereist. Daarom zijn niet alle functies beschikbaar op alle apparaten. De beschikbaarheid van functies wordt in de onderstaande tabel aangegeven. Raadpleeg het gegevensblad van het relevante apparaat voor meer details.

<table>
<thead>
<tr>
<th>Serie / Model</th>
<th>DC</th>
<th>BW</th>
<th>LPF</th>
<th>50Ω</th>
<th>FC</th>
<th>GEN</th>
<th>SWP</th>
<th>AWG</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC-212 [7]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USB DrDAQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PicoLog 1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PicoScope 2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PicoScope 2000 MSO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PicoScope 3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PicoScope 3000 A/B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PicoScope 3000 MSO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PicoScope 4000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PicoScope 5000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PicoScope 5000 A/B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PicoScope 6000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PicoScope 6000 A/B/C/D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Serie / Model</th>
<th>DIN</th>
<th>EXT</th>
<th>AUX</th>
<th>ADV</th>
<th>RNT</th>
<th>RAP</th>
<th>SGT</th>
<th>FR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC-212 [7]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USB DrDAQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PicoLog 1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PicoScope 2000A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PicoScope 2000 MSO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PicoScope 3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PicoScope 3000 A/B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PicoScope 3000 MSO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PicoScope 4000</td>
<td>[7]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PicoScope 5000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PicoScope 5000 A/B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PicoScope 6000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PicoScope 6000 A/B/C/D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. alleen 2204 tot 2208.
2. alleen 2206 tot 2208.
3. alleen 2206A, 2207A en 2208A.
4. alleen 3205 en 3206.
5. alleen 4223, 4224, 4423 en 4424.
6. alleen 4226 en 4227.
7. alleen 4226, 4227 en 4262.

50Ω 50 Ω ingangen
ADV Geavanceerde activeringen
AWG Generator voor willekeurige golfvormen
AUX AUX ingang/uitgang
BW Schakelbare Bandbreedtelimiet
DC DC offset-afstelling
DIN Digitale ingangen
EXT Externe activeringsingang
FR Flexibele resolutie
FC Frequentieteller
GEN Signaalgenerator
LPF Laagdoorlaatfilter
RAP Snelle activering
RNT Activering zwakke puls
SGT Signaalgenerator activeren
SWP Sweepmodus signaalgenerator
9.7 Opdrachtregelsyntaxis

PicoScope kan worden uitgevoerd vanaf de opdrachtregel van Windows, zodat u taken handmatig of met besturing van een batch-bestand of een ander programma kunt uitvoeren.

De GUI weergeven

PicoScope <filename>

<filename> Specificeert een enkel .psdata- of .pssettings-bestand.

Voorbeeld: PicoScope C:\Temp\source.psdata

Help weergeven

PicoScope /?

Geeft hulp weer bij alle opdrachtregelopties.

Een psdata-bestand converteren

PicoScope /C,/c

Hiermee zet u het formaat van een psdbatabestand om naar een ander formaat. Kan niet gebruikt worden met /p[rint].

Syntaxis:

PicoScope /c[onvert] <names> [/d <names>] /f <format> [/q] [/b [n] [:m] | [all]] [/v <viewportname>]

Voorbeeld:

PicoScope /c C:\Temp\source.psdata /f png /b 5:9 /v Scope2
Een gezichtspunt afdrukken

PicoScope /P,/p

Hiermee drukt u een gezichtspunt in het psdata-bestand af. Kan niet gebruikt worden met /c[onvert].

Syntaxis:

```plaintext
PicoScope /print <names> [/b [<n>[:<m>]] | all] [/v <viewportname>]
```

<names> Specificeert een lijst met één of meer directory’s of psdata-bestanden. Er mogen wildcards worden gebruikt om meerdere bestanden te specificeren. Indien een directory wordt opgegeven, dan worden alle psdata-bestanden in die directory opgegeven. Dit is een verplicht argument.

<names> Specificeert een lijst met één of meer directory’s of psdata-bestanden. Er mogen wildcards worden gebruikt om meerdere bestanden te specificeren. Indien een directory wordt opgegeven, dan worden alle psdata-bestanden in die directory opgegeven. Dit is een verplicht argument.

/b [<n>[:<m>]]|all Golfvorm nummer n, golfvorm bereik n tot m of alle buffers. De standaardinstelling is de huidige golfvorm.

/v <viewportname> Om te zetten gezichtspunt. Standaard is dit het huidige gezichtspunt.

Voorbeeld:

```
PicoScope /p C:\Temp\source.psdata /b 5:9 /v Scope2
```

Te importeren aantekeningen

PicoScope /N,/n

Kopieert tekst van een opgegeven bestand naar het gedeelte voor Aantekeningen.

Syntaxis:

```plaintext
PicoScope /notes <notes filename> <filename>
```

<notes filename> Specificeert één enkel tekstbestand.

<filename> Specificeert een enkel psdata- of pssettings-bestand.

Voorbeeld:

```
PicoScope /n C:\Temp\source.txt C:\Temp\source.psdata
```

Een automatisering-opdracht uitvoeren

PicoScope /A,/a

Uitvoerenmacro op een bestaand exemplaar van PicoScope 6.

Syntaxis:

```plaintext
PicoScope /automation <macro>
```

<macro> Pad naar .psmacro-bestand met een macro

Voorbeelden:

```
PicoScope /a MyMacro.psmacro
```
Flexibele voeding

Het flexibele voedingssysteem voor PicoScope-apparaten biedt een keuze uit twee stroombronnen:

- USB-kabel aangesloten op de USB-poort
- AC-adapter aangesloten op de DC IN-aansluiting

USB-voeding

Als voor de eerste keer USB-voeding gebruikt, zal PicoScope u eraan herinneren dat de DC-voeding niet is aangesloten:

Op dit punt kunt u kiezen om de AC-adapter aan te sluiten op de DC IN-aansluiting van de oscilloscoop of kiezen om USB te gebruiken. Als u de AC-adapter aansluit, wordt het dialoogvenster automatisch gesloten.

Er zijn twee manieren om de scoop via USB aan te sluiten:

- Gebruik de tweekoppige USB-kabel meegeleverd om aan te sluiten op twee USB-poorten van uw computer of op een USB-hub. Elke aangedreven USB-poort die voldoet aan de USB 2.0-specificatie is geschikt. Een USB-hub zonder stroom kan niet worden gebruikt.

PicoScope zal deze vereisten uiteenzetten:
Onvoldoende USB-voeding

Als er onvoldoende USB-voeding beschikbaar is, wordt dit dialoogvenster weergegeven in PicoScope:

Schakel over naar een USB-poort die voldoende stroom kan leveren, gebruik de tweekoppige USB-kabel of sluit de AC-adapter aan.
9.9 Woordenlijst

AC-koppeling. In deze modus weigert het scoop-apparaat heel lage signaalfrequenties onder ongeveer 1 hertz. Hierdoor kunt u de volledige resolutie van de scoop gebruiken om AC-signalen nauwkeurig te meten en enige DC-offset te negeren. U kunt het signaalniveau ten opzichte van de aarde in deze modus niet meten.

Activering. Het deel van een oscilloscoop dat een inkomend signaal volgt en beslist om een opname te beginnen. Afhankelijk van de activeringsvoorwaarde die u instelt, kan het scoop-apparaat activeren wanneer het signaal een drempel overschrijdt of wachten tot voldaan is aan een meer complexe voorwaarde.

As. Een lijn gemarkeerd met metingen. PicoScope toont een verticale as voor elk kanaal dat is ingeschakeld in een gezichtspunt en geeft metingen in volt of andere eenheden. Elke weergave heeft ook een enkele horizontale as, die is gecodeerd in eenheden van tijd voor een scoopgezichtspunt of eenheden van frequentie voor een spectrumgezichtspunt.

AWG. Een willekeurige golfformgenerator (AWG) is een circuit dat een golfform van bijna elke vorm kan genereren. Het wordt geprogrammeerd met een gegevensbestand, voorzien door de gebruiker, waarin de uitgangsspanning wordt gedefinieerd op een aantal punten gelijk verdeeld in de tijd. Het circuit gebruikt deze gegevens om de golfform te reconstrueren met een opgegeven amplitude en frequentie.

DC-koppeling. In deze modus kan het scoop-apparaat het signaalniveau meten ten opzichte van de aarding. Dit toont zowel de AC- als DC-componenten.

Demomodus. Als PicoScope wordt gestart zonder aangesloten apparaat, dan kunt u een "demo-apparaat" selecteren. Dit is een virtuele eenheid die u kunt gebruiken om de software te testen. Het programma is dan in de "demo" (afkorting voor "demonstratie") modus. Deze modus biedt een gesimuleerde, instelbare signaalbron voor elk ingangskanaal van het demo-apparaat.

Dode tijd. De tijd tussen het einde van een opname en het begin van de volgende. Gebruik *nelle* activeringsmodus om zo weinig mogelijk dode tijd te hebben.

ETS. Equivalent Time Sampling (Gelijke tijd bemonstering). Een methode voor het verhogen van de effectieve bemonsteringsnelheid van het apparaat. In een scoopgezichtspunt legt PicoScope verschillende cycli van een repetitief signaal vast. Vervolgens combineert het de resultaten om een enkele golfform te produceren met een hogere tijdsresolutie en met een enkele opname. Voor nauwkeurige resultaten moet het signaal perfect repetitief zijn en de activering stabiel.

Gezichtspunt. Een weergave van de gegevens van een scoop-apparaat. Een gezichtspunt kan een *scoopgezichtspunt*, een *XY-gezichtspunt* of een *spectrum-gezichtspunt* zijn.

Grid. De rangschikking van viewports. Het aantal rijen van het raster en het aantal kolommen van het raster kunnen elk 1, 2, 3 of 4 zijn.

In focus. PicoScope kan verschillende gezichtspunten weergeven, maar slechts één gezichtspunt is op elke gegeven moment in focus. Als u op een werkbalkknop klikt, zal dit meestal alleen invloed hebben op het gezichtspunt dat in focus is. Om een gezichtspunt in focus te brengen, klikt u erop.

Kanaal. Een scoop-apparaat heeft één of meer kanalen, die elk één signaal kunnen bemonsteren. Scoop-apparaten met hoge snelheden hebben meestal één BNC-connector per kanaal.

Knopinfo. Een label dat wordt weergegeven als u de muisaanwijzer over sommige delen van het scherm van PicoScope verplaatst, zoals knoppen, besturingselementen en linialen.

Liniaal. Een verticale of horizontale stippellijn die kan worden versleept op een golfvorm in een gezichtspunt. PicoScope toont het signaalnummer, de tijdwaarde of frequentiewaarde van alle linialen in het vak met de liniaallegenda.

MSO. Gemengd-signaal oscilloscoop. Een instrument dat analoge en digitale signalen op dezelfde tijdbasis vastlegt en weergeeft.

PC-datalogger. Een meetinstrument bestaande uit een hardware-interface en de PicoLog-software op een PC. U kunt ook het apparaat gebruiken met de PicoScope-software om een oscilloscoop te maken met een spanningsingang met meerdere kanalen.

PC-oscilloscoop. Een meetinstrument bestaande uit een scoop-apparaat en de PicoScope-software op een PC. Een PC-oscilloscoop heeft dezelfde functies als een traditionele benchtop-oscilloscoop, maar is meer flexibel en kosteneffectief. U kunt de prestaties verbeteren door de PC te upgraden met behulp van standaard onderdelen verkrijgbaar in elke computerwinkel, of door een nieuwe oscilloscoop aan te kopen. Bovendien kunt u de software upgraden door een update te downloaden Pico Technology.

Probe. Een accessoire die wordt bevestigd aan uw oscilloscoop en dat een signaal opvangt om te meten. Er zijn probes beschikbaar om elke signaalvorm op te vangen, maar ze leveren altijd een spanningssignaal aan de oscilloscoop. PicoScope heeft ingebouwde definities van standaardprobes, maar u kunt ook aangepaste probes definiëren.

Raster. De horizontale en verticale stippellijnen in elke weergave. Deze help u de amplitude en tijd of frequentie te schatten van items op de golfvorm.

Resolutie verbeteren. Monsters verzamelen aan een sneller tempo dan aangevraagd en vervolgens de overtollige monsters combineren door het gemiddelde te berekenen. Deze techniek kan de effectieve resolutie verhogen van een scoop-apparaat als er een kleine hoeveelheid ruis op het signaal zit. (Meer details).

Scoop-apparaat. Het toestel van Pico Technology dat u aansluit op de USB- of
parallelpoort van uw computer. Met de PicoScope-software verandert het scoop-apparaat uw computer in een PC-oscilloscoop.

Standaardafwijking. Een statistische maat voor de spreiding van een aantal monsters. De standaardafwijking van de set $y_1 \cdots y_n$ wordt gedefinieerd als:

$$SD = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}$$

waarbij \bar{y} het rekenkundige gemiddelde is van alle monsters. De eenheden van de standaardafwijking zijn dezelfde als die van de oorspronkelijke monsters.

Verticale resolutie. Het aantal bits dat het scoop-apparaat gebruikt om het signaalniveau weer te geven. Dit aantal hangt af van het ontwerp van het apparaat, maar in sommige gevallen kan het gestimuleerd worden met behulp van de **resolutieverbetering**.

Viewport. De gezichtspunten in het **PicoScope-venster** zijn gerangschikt in een raster, en elk rechthoekig gebied in het raster heet een viewport.
Index

%
%bestand% variabele 85
%buffer% variabele 85
%tijd% variabele 85

5
50 Ω DC ingangen 110, 183

A
Aangepaste probes 30
dia loogvenster 57
opslaan 38
Aansprakelijkheid 3
Aantal bemonsteringen 21
Aantekeningen 47, 48
Accelerometer-ingangen 110
AC-Koppeling 188
Activering 146, 181, 188
digitaal 152
dubbele flank 148
flank 149
fouten 149
geavanceerd 146, 148
interval 148, 149
logisch 149
marker 17
modusinstelling 146
ontbrekende gebeurtenissen 149
pulsbreedte 148, 149
referentiepunt 181
timing 181
uitval 149
venster 149
werk balk 103, 146
zakke puls 149
Activering zakke puls 149, 183
Afbeelding opslaan als 39
Afdrukken 38
van menu 38
vanaf opdrachtregel 184
voorbeeld 38
voorkeuren 100
Afsluiten 38
Alarmen 35, 85
opslaan bij activering 171
Algemene voorkeuren 93

Amerikaanse meeteenheden 99
Analo ge intensiteit 129
Analo ge offset 111
Apparaat aansluiten 38
Apparaat, omschakelen 157
As 12, 16, 19, 188
automatisch ordenen 49
horizontaal 12, 16, 19
offset 161
schaalverdeling 115, 161
verticaal 12, 16, 19
Automatische kolombreedte 52
Auxiliary (AUX) I/O 146, 183
AWG 188

B
Bandbreedtelimiet 111, 183
Batterij 94
Bedrijfskritieke toepassingen 3
Bemonstering voorkeuren 95
Bemonsteringssnelheid 125
Bereikinstelling 110
Bestand openen 38
Bestand opslaan 38
Bestand sluiten 38
Bestandsconversie 108
Biep 85
Binaire bestanden, exporteren 44
Bitstroom 139
Bladeren 161
bmp-bestanden 39
Buffer navigatie 36
Buiten bereik-indicator 12, 110

C
Copyright 3
csv-bestanden 39
CSV-bestanden, exporteren 43
Cursors (Zie Linialen) 23, 24, 28

D
Daaltijd 54
drempel 54
DC IN-voeding 186
DC-koppeling 188
DC-offset 111, 183
Demo-apparaat 143
Demo-modus 143, 144, 188
Demo-signalen
dia loogvenster 144

Index

Demo-signalen
 menu 143
Dialoogvenster aangepast raster 51
Dialoogvenster Bereikenbeheer 64
Dialoogvenster Bewerk bereik 66
 Tabblad Geavanceerd 68
Dialoogvenster Digitale activering 152
Dialoogvenster Digitale instellingen 118
Dialoogvenster Filtermethode 69
Dialoogvenster Handmatig bereiken instellen 65
Dialoogvenster Importeren uit een kanaal 142
Dialoogvenster Maak een nieuwe aangepaste probe 59
Dialoogvenster Masker genereren 90
Dialoogvenster Meting toevoegen 53
Dialoogvenster Referentiegolfvorm bewerken 83
Dialoogvenster Schaal toepassingsmethode 62
Dialoogvenster Schaalverdeling Opzoek tabel 63
Dialoogvenster Verbinden met Apparaat 107
Dialoogvenster Vergelijking 76
Dialoogvenster voertuiggegevens 48
Dialoogvenster Wijzig een bestaande aangepaste probe 60
Digitale ingangen 118, 183
Digitale kleur 129
Digitale uitgangen 121
 USB DrDAQ 124
Digitale weergave 14
contextmenu 15
Dode tijd 188
DrDAQ 122
Drempel voor metingen 54
Drempels, digitale ingang 118

E

Een meting toevoegen 53
Eenheden verzameltijd 93
Effectieve resolutie 113
Eigenschappen
 weergeven 49
Eigenschappenvenster 29
ETS 146, 188
 en geavanceerde activering 148
Externe (EXT) trigger 146, 183

statistieken 54
Filteren 111
 kanalen 116
 metingen 21
Filteren van lage doorvoer 112
Flankactivering 149
Flexibele resolutie 183
Flexibele voeding 186
Focus 188
Fouten, vinden 149
Frequentielegenda 24, 28
Frequentielinialen 24
Frequentieteller 110, 183
Frequentieverschil, meten 159
Functie Geavanceerd 76
functie Vertraging 76
Functies, wiskundig 76

G

Geavanceerde activering 146, 148
types 149, 183
Geavanceerde instellingen metingen 54
Gebruik 3
Gebruikershandleiding 105
Gegevens exporteren 42
 binaire indeling 44
 tekstindelingen 43
Gegevensbestanden
 converteren 108
Gegevensbestanden converteren 108, 184
geldige randen, vinden 149
Gelijkij tijd bemonstering 146
Geluidsniveau 85
Gemiddelde waarde (statistieken) 21
Generator voor willekeurige golfvormen 133, 183
 bestanden 138
 bewerkingsvenster 139
 importeren uit een kanaal 142
Geschiktheid voor doel 3
Gezichtspunt 188
deelweergaven inschakelen 49
 kanalen selecteren 49
 menu 49
 scoop 12
 spectrum 19
 verplaatsen 160
 XY 16
GIF-animatie 39
gif-bestanden 39
Golfvorm 7, 12
opacity 38
Golfvormbuffer
 aantal 93
Groepen, digitale ingang 118

H
Handelsmerken 3, 4
Handgereedschap 155
Harmonische instellingen voor metingen 54
Herstel 'Niet meer weergeven' dialoogvensters 93
Horizontale as 12, 16, 19
Hysterese 151

I
IEPE-ingangen 110
Ingangsimpedantie 110
Instellingen
 opslaan 38
Interpolatie
 lineair 95
 sin(x)/x 95
Interval activering 148
Intervalactivering 149

K
Kanaal 188
 selecteren in een gezichtspunt 49
Kanaal naar de achterzijde zenden 115
Kanaal naar de voorzijde brengen 115
Kanaalininstellingen
 in eigenschappenvenster 29
Kanaalopties
 knop 110
 menu 111
Kanaalvolgorde 115
Klembord 47
Kleurvoorkeren 101
Knop Dalende flank 146
Knop digitale ingangen 110, 118
Knop omkeren 31
Knop Stijgende flank 146
Knopinfo 188
Knopinfo aanwijzer 22
Kopiëren
 als beeld 47
 als tekst 47
Koppelingsinstellingen 110

L
Laagdoorlaatfilter 116, 183
Laagdoorlaatfilteren 69
Led
 op USB DrDAQ 123
Lichtnet 94
Lijndikte 101
Liniaal 12, 16, 19
 definitie 188
 fase 25
 instellingen 27
 knop 12
 knoppen 16, 19
 legenda 28
 spanning 12, 16, 19
 tijd 12, 19
 vergrendelknop 28
 verwijderen 23, 24
Lissajousfiguren 16
Logische activering 149
 dialoogvenster 153
Logische operator AND 153
Logische operator NAND 153
Logische operator NOR 153
Logische operator OR 153
Logische operator XNOR 153
Logische operator XOR 153

M
Macro
 Recorder 91
 uitvoeren vanaf opdrachtregel 184
mask-bestanden 88
Masker aanmaken 88
Maskerlimiettesten 34, 56
Hoe 168
Maskers
 bewerken 89
 dialoogvenster bibliotheek 88
 exporteren 88
 genereren 88
 importeren 88
 in Buffernavigatie 36
 kleuren 34, 101
 menu 87
 Polygonen 89
 selectiedialoogvenster 34
 weergeven 49
Math kanaal Wizard
 Dialoogvenster Eenheden en bereik 80
 Dialoogvenster naam en kleur 79
 Dialoogvenster Voltooi 81
MATLAB-bestanden
MATLAB-bestanden
exporteren 44, 82
opslaan 39
Max (statistieken) 21
Meetsysteem
selecteren 99
Menu Automotive 106
Menu Bestand 38
Menu Bewerken 47
Menu Gereedschap 56
Menu Help 105
Menu opstartinstellingen 46
Menu's 37
Metingen
bewerken 21, 52
filteren 21
geavanceerde instellingen 54
lettergrootte 52
lijst van types 175
menu 52
scoop 176
spectrum 177
statistieken 21
tabel 21
toevoegen 21, 52, 53
vastleggingsgrootte 93
verwijderen 21, 52
werkbalk 103, 132
Metrische meeteenheden 99
Min (statistieken) 21
MSO 188
gezichtspunt 13
instelling 118

N
Navigatiewerkbalk buffer 131
Netspanning 94
Nieuwe functies 2
Normale selectie 155
Nul-offset 112

O
Offset 161
analoog 111
Omwentelingen per minuut 28
Ondersteuning 3
Ontbrekende gebeurtenissen, vinden 149
Opdrachtregelsyntax 184
Opmerkingen
importeren vanaf opdrachtregel 184
Opslaan als 38
diaLogvenster 39
Opslaan bij activering 85, 171
Oscilloscoop 7, 7

P
Page Down-toets 38
Page Up-toets 38
Pagina voorkeuren energiebeheer 94
Patroonactivering 152
PC-oscilloscoop 8
Persistentiemodus 20
in- en uitschakelen 103
knop 125
opties 129
PicoLog 1000 serie 120, 121
PicoScope 6 1, 2, 8
Gebruik 3, 6, 7
hoofdvenster 11
png-bestanden 39
Polygon 89
Post-activering vertraging 181
instelling 146, 181
pijl 18
Pre-activering vertraging 181
instelling 146, 181
Probe 188
angepast 30
diaLogvenster identificatie 70
DiaLogvenster uitvoereenheden 61
Progressieve modus 188
psdata-bestanden
converteren 108, 184
opslaan 39
pskeys-bestanden 98
psmaths-bestanden 72, 76, 79
psreference-bestanden 82
pssettings-bestanden 39
Pulsbreedte activering 148
Pulsbreedte-activering 149
PWM-uitgang
PicoLog 1000 serie 121
USB DrDAQ 124

R
Raster 12, 16, 19, 188
opmaak 49, 51
Referentiegolfvormen 56
diaLogvenster 82
geduiken in vergelijkingen 76
Referenties

Referentiegolfvormen 56
Library 82
Loaded 82
overzicht 32
toevoegen 49
vertraging 115

Rekenkanalen 56, 72
Bibliotheek 72
diaalogvenster 72
Gladen 72
Ingebouwd 72
knop 110
opslaan 38
overzicht 31

Resolutie verbeteren 111, 113, 188
Resolutie-instellingen 125
RGB LED op USB-DrDAQ 123

S

Schaalverdeling 8, 161
knop 115
Schaalverdeling assen 112
Scoop-apparaat 188
Scoopgezichtspunt 12

Scoopmetingen
AC-spanning 176
Bedrijfscyclus 176
Cyclustijd 176
Daalting 176
Dalingstempo 176
DC-spanning 176
Frequentie 176
Hoge pulsbreedte 176
Lage pulsbreedte 176
Maximum 176
Minimum 176
Stijngtempo 176
Stijgtijd 176
Top-tot-top 176

Scoopmodus 9
knop 125

Selectie, normale 155
Selectiekader voor inzoomen 155
Selectievakje ‘Gebruikt’ 153
Seriële decodering 33, 56
diaalogvenster 84

Serienummer
van oscilloscoop 105

Signaalgenerator
activering 183
diaalogvenster 133

knop 133
sweepmodus 133, 183
Types golfvormen 179
USB DrDAQ 137

Signaallinien 12, 16, 19, 23
Signaalverschil, meten 158
Sin(x)/x voorkeuren 95
Sloopgezichtspunt 10
Snelle activering 146, 183
Sneltoetsen 97, 155
Softwareversie 1
Spatiebalk 145

Spectrumgezichtspunt 10, 19
instellen 163

Spectrummetingen
Amplitude hoogste piek 177
Dynamisch bereik stoorsignalen (SFDR) 177
Frequentie op piek 177
Intermodulatie vervorming (IMD) 177
Signaal / ruisverhouding (SNR) 177
Totaal vermogen 177
Totale harmonische vervorming (THD) 177
Totale harmonische vervorming plus ruis (THD+N) 177

Spectrummodus 9
in- en uitschakelen 103
knop 125

Spectrumopties
bins 127
diaalogvenster 127
schaalverdeling 127
weergavemodus 127

Standaard afrukinstellingen 100
Standaardafwijking 21, 188
Start/Stop werkbalk 103, 145
Statistieken 21
filteren 54

Statusactivering 152

Stijgtijd
drempel 54

Stroomnet huis 94
Sweepmodus 133, 183
Symbolen
gele waarschuwing 31
rode waarschuwing 12

Systeemvereisten 5

T

Taalvoorkeuren 99
Tabblad decodering 33
Tabel met apparaateigenschappen 183
Tekstbestanden, exporteren 39, 43
Tijdinstellingen 125
Tijdlinialen 12, 19, 24
Tijdsverschil, meten 159
Tijdvenster 29
toetsenbord 97
Voortgangsbalk 127

U
Uitvalactivering 149
Upgrades 3, 4
USB DrDAQ 122
USB-voeding 186

V
Valse randen, vinden 149
Vastleggingsmodi 9, 10
Vensteractivering 149
Vensterfuncties 127, 180
Veranderen van apparaat 157
Verschuiven 156
Versienummer
 hardware 105
 software 1, 105
Verticale as 12, 16, 19
Verticale resolutie 188
Viewport 188
Virussen 3
Vloeiend maken 95
Voeding 186
Volgen van linialen 28
Voorkeur bemonsteringssnelheid 94
Voorkeur maximum golfvormen 93
Voorkeur vastleggingsgrootte 93
Voorkeuren 56
 algemeen 93
 apparaat selecteren 103
 bemonstering 95
 bemonsteringssnelheid 94
diaalogenvenster 92
 energiebeheer 94
 kleuren 101
 persistentiemoord 103
 spectrummodus 103
 Standaard afdrukinstitellingen 100
 taal 99

W
Waarschuwingssymbool 110
geel 31
rood 12
Waarschuwingssymbool kanaal 31
Wat is er nieuw 2
Werkbalk Kanalen
 PicoLog 1000 serie 120
 standaard 110
 USB DrDAQ 122
Werkbalk voor vastleggingsinstellingen 125
Werk balken 110
Werkblad, exporteren naar 39
Wettelijke verklaring 3
Wizard aangepaste onderzoeken 59
Diaalogenvenster Aangepaste probe identificatie 70
Diaalogenvenster Afgewerkt 71
Diaalogenvenster Bereikenbeheer 64
Diaalogenvenster Bewerk bereik 66
Diaalogenvenster Bewerk bereik (tabblad Geavanceerd) 68
Diaalogenvenster Handmatig bereiken instellen 65
Diaalogenvenster Maak een nieuwe aanpast probe 59
Diaalogenvenster Probe uitvoerenheden 61
Diaalogenvenster Schaal toepassingsmethode 62
Diaalogenvenster Schaalverdeling Opzoektabel 63
Diaalogenvenster Wijzig een bestaande aangepaste probe 60
Wizard Aangepaste probes... 56
Wizard Math kanaal
 Diaalogenvenster Vergelijking 76
 Introductiediaalogenvenster 75
 overzicht 74
Woordenlijst 188

X
X-as opdracht 16
X-as, configureren 49
XY-gezichtspunt 16

Z
Zoom ongedaan maken 155
Zoomen 161
 ongedaan maken 155
Zoomen 161
 Werkbalk voor zoomen en bladeren 155
 Zoomoverzicht 156
Z-volgorde 115