
Programmer's Guide

adc20.en r2

High-Resolution Data Loggers

ADC-20/ADC-24

ContentsI

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved.adc20.en r2

Contents
1 Overview ... 1

2 Notices .. 2

1 Legal information .. 2

2 Trademarks .. 2

3 Getting started ... 3

1 Installing the software ... 3

2 Connecting the data logger .. 3

4 Concepts ... 4

1 Recording methods ... 4

2 Windows driver .. 4

3 Scaling ... 4

5 Driver functions ... 5

1 HRDLAcknowledge – ping unit function ... 6

2 HRDLCloseUnit – shuts down unit ... 7

3 HRDLCollectSingleValueAsync – sample a single value, non-blocking ... 8

4 HRDLGetMinMaxAdcCounts – return the maximum and minimum ADC count .. 9

5 HRDLGetNumberOfEnabledChannels – return the number of analog channels enabled 10

6 HRDLGetSingleValue – take one sample for the specified channel ... 11

7 HRDLGetSingleValueAsync – retrieves reading after call to HRDLCollectSingleValueAsync() 12

8 HRDLGetTimesAndValues – return time-stamped samples ... 14

9 HRDLGetUnitInfo – returns unit information as character string ... 15

10 HRDLGetValues – return samples for each enabled channel .. 17

11 HRDLOpenUnit – open a data logger ... 18

12 HRDLOpenUnitAsync – open a unit without blocking the calling thread .. 19

13 HRDLOpenUnitProgress – check progress of an asynchronous open operation 20

14 HRDLReady – find out if readings are ready to be collected ... 21

15 HRDLRun – start sampling ... 22

16 HRDLSetAnalogInChannel – enable or disable an analog channel ... 23

17 HRDLSetDigitalIOChannel – set a digital output or input (ADC-24 only) .. 24

18 HRDLSetInterval – set the sampling time interval ... 26

19 HRDLSetMains – set the mains noise rejection frequency .. 27

20 HRDLStop – stop the device when streaming .. 28

6 Sequence of calls and data flow .. 29

1 Streaming recording methods ... 29

1 Collecting a block of data ... 29

2 Collecting windowed or streaming data .. 30

2 Single-value recording methods .. 31

1 Collecting a single reading, blocking ... 31

2 Collecting a single reading, non-blocking ... 31

7 Glossary ... 32

ADC-20/ADC-24 Programmer's Guide 1

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved. adc20.en r2

1 Overview

The ADC-20 and ADC-24 High-Resolution Data Loggers are multichannel, high-accuracy USB data
loggers for use with PCs. They require no external power supply.

We provide 32-bit and 64-bit Windows drivers to allow you to control the data loggers from your own
software. These drivers are included in the PicoSDK package, which you can download from
www.picotech.com/downloads.

Example code in a variety of programming languages can be downloaded from the "picotech"
organization on GitHub.

The hardware and software are compatible with Microsoft Windows 7, 8 and 10.

https://www.picotech.com/downloads
https://github.com/picotech
https://github.com/picotech

Notices2

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved.adc20.en r2

2 Notices

2.1 Legal information

The material contained in this release is licensed, not sold. Pico Technology Limited grants a license to
the person who installs this software, subject to the conditions listed below.

Access. The licensee agrees to allow access to this software only to persons who have been informed
of these conditions and agree to abide by them.

Usage. The software in this release is for use only with Pico products or with data collected using Pico
products.

Copyright. Pico Technology Limited claims the copyright of, and retains the rights to, all material
(software, documents etc.) contained in this release. You may copy and distribute the entire release in
its original state, but must not copy individual items within the release other than for backup purposes.

Liability. Pico Technology and its agents shall not be liable for any loss, damage or injury, howsoever
caused, related to the use of Pico Technology equipment or software, unless excluded by statute.

Fitness for purpose. As no two applications are the same, Pico Technology cannot guarantee that its
equipment or software is suitable for a given application. It is your responsibility, therefore, to ensure
that the product is suitable for your application.

Mission-critical applications. This software is intended for use on a computer that may be running
other software products. For this reason, one of the conditions of the license is that it excludes usage
in mission-critical applications, such as life-support systems.

Viruses. This software was continuously monitored for viruses during production, but you are
responsible for virus-checking the software once it is installed.

2.2 Trademarks

Pico Technology Limited and PicoLog are trademarks of Pico Technology Limited, registered in the
United Kingdom and other countries.

PicoLog and Pico Technology are registered in the U.S. Patent and Trademark Office.

Windows and Excel are registered trademarks of Microsoft Corporation in the USA and other countries.

ADC-20/ADC-24 Programmer's Guide 3

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved. adc20.en r2

3 Getting started

3.1 Installing the software

Before you connect the ADC-20 or ADC-24 to your computer for the first time, you must install the driver
using PicoSDK. You can download 32-bit and 64-bit versions of PicoSDK from
www.picotech.com/downloads.

3.2 Connecting the data logger

When you have installed the driver, connect the data logger's USB cable to a spare USB port on your
computer and wait until Windows displays the message "Device is ready to use".

https://www.picotech.com/downloads

Concepts4

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved.adc20.en r2

4 Concepts

4.1 Recording methods

The ADC-20/ADC-24 driver provides three methods of recording data. All these methods support USB
1.1 and later.

· Streaming. The driver constantly polls the device, and samples are placed in a buffer until retrieved
by your application. Precise sample timing is controlled by the unit.

· Single value (blocking). You make a single request for a sample, blocking the calling thread, and
when the sample has been received the driver returns the value to your application.

· Single value (non-blocking). You make a single request for a sample without blocking the calling
thread, and when the sample has been received the driver returns the value to your application.

4.2 Windows driver

The picohrdl.dll dynamic link library (DLL) in the lib subdirectory of your SDK installation is a
driver that allows you to program your ADC-20 or ADC-24 data logger. It is supplied in 32-bit and 64-bit
versions. The driver exports the function definitions in standard C format, but this does not limit you to
programming in C. You can use the API with any programming language that supports standard C calls.
It can also be used with programs like Microsoft Excel. The driver supports Windows 7, 8 and 10.

4.3 Scaling

To convert from ADC values to volts, first obtain the minimum and maximum ADC values for the

selected channel by calling HRDLGetMinMaxAdcCounts() in the driver. Next, scale the ADC value to

the voltage range you specified when you called HRDLSetAnalogInChannel(). You can calculate
the voltage range programmatically by using

Vmax = 2500 mV / (2^r)

where r is the range constant you supplied to HRDLSetAnalogInChannel() (0 for ±2500 mV, 1 for
±1250 mV and so on).

You can then use Vmax to calculate the scaled voltage, V, with the following formula

V = (raw_ADC_value / max_ADC_Value) * Vmax

where raw_ADC_value is the reading from the device and max_ADC_value is the max ADC value for the

device obtained from HRDLGetMinMaxAdcCounts().

ADC-20/ADC-24 Programmer's Guide 5

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved. adc20.en r2

5 Driver functions

The following sections describe the functions available to an application using the ADC-20 and ADC-24.

All functions are C functions using the standard call naming convention (__stdcall) and are exported
with both decorated and undecorated names.

Driver functions6

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved.adc20.en r2

5.1 HRDLAcknowledge – ping unit function

int16_t HRDLAcknowlege

(

int16_t handle

)

This is equivalent to a ping unit function on other devices.

The function returns 1 if the device is connected, 0 if the device has lost connection.

This function should not be called during a data collection run, for example, after the HRDLRun()
function has been called.

If the return value is 0, call HRDLGetUnitInfo with the info type argument set to

HRDL_SETTINGS. Then the error code returned should be SE_COMMUNICATION_FAILED (8).

Arguments

handle, device identifier returned by HRDLOpenUnit()

Returns

0 if an error has occurred

1 device connected

ADC-20/ADC-24 Programmer's Guide 7

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved. adc20.en r2

5.2 HRDLCloseUnit – shuts down unit

int16_t HRDLCloseUnit

(

int16_t handle

)

Shuts down an ADC-20 or ADC-24 device.

Arguments

handle, device identifier returned by HRDLOpenUnit()

Returns

1 if a valid handle is passed
0 if not

Driver functions8

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved.adc20.en r2

5.3 HRDLCollectSingleValueAsync – sample a single value, non-blocking

int16_t HRDLCollectSingleValueAsync

(

int16_t handle,

int16_t channel,

int16_t range,

int16_t conversionTime,

int16_t singleEnded

)

This function starts the unit sampling one value without blocking the calling application's flow. Used in

conjunction with HRDLGetSingleValueAsync() and HRDLReady().

Arguments

handle, device identifier returned by HRDLOpenUnit()

channel, channel number to convert. If the channel is not valid then the function will fail.

range, the voltage range to be used. If the range is not valid, the function

HRDLGetSingleValueAsync() will return 0.

conversionTime, the time interval in which the sample should be converted. If the conversion

time is invalid, the function HRDLGetSingleValueAsync() will fail and return 0.

singleEnded, the type of voltage to be measured:
0: differential
<>0: single-ended

Returns

1 if a valid handle is passed and the settings are correct
0 if not

ADC-20/ADC-24 Programmer's Guide 9

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved. adc20.en r2

5.4 HRDLGetMinMaxAdcCounts – return the maximum and minimum
ADC count

int16_t HRDLGetMinMaxAdcCounts

(

int16_t handle,

int32_t * minAdc,

int32_t * maxAdc,

int16_t channel

)

This function returns the maximum and minimum ADC count available for the device referenced by
handle. The count can vary depending on whether the channel is odd or even numbered.

Arguments

handle, device identifier returned by HRDLOpenUnit()

minAdc, pointer to an int32_t, used to return the minimum ADC count available for the unit

referred to by handle

maxAdc, pointer to an int32_t, used to return the maximum ADC count available for the unit

referred to by handle

channel, channel number for which maximum and minimum ADC count are required

Returns

1 if a valid handle is passed
0 if not

Driver functions10

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved.adc20.en r2

5.5 HRDLGetNumberOfEnabledChannels – return the number of analog
channels enabled

int16_t HRDLGetNumberOfEnabledChannels

(

int16_t handle,

int16_t * nEnabledChannels

)

This function returns the number of analog channels enabled.

Arguments

handle, device identifier returned by HRDLOpenUnit()

nEnabledChannels, pointer to an int16_t where the number of channels enabled will be written

Returns

1 if a valid handle is passed
0 if not

ADC-20/ADC-24 Programmer's Guide 11

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved. adc20.en r2

5.6 HRDLGetSingleValue – take one sample for the specified channel

int16_t HRDLGetSingleValue

(

int16_t handle,

int16_t channel,

int16_t range,

int16_t conversionTime,

int16_t singleEnded,

int16_t * overflow

int32_t * value

)

This function takes one sample for the specified channel at the selected voltage range and conversion
time.

Arguments

handle, device identifier returned by HRDLOpenUnit()

channel, the channel number to convert.
ADC-20: 1 to 8
ADC-24: 1 to 16

If the channel is not valid then the function will fail and return 0.

range, the voltage range to be used. See HRDLSetAnalogInChannel() for possible values. If the
range is not valid, the function will return 0.

conversionTime, the time interval in which the sample should be converted. See

HRDLSetInterval() for possible values. If the conversion time is invalid, the function will fail and
return 0.

singleEnded, the type of voltage to be measured.
0: differential
<>0: single-ended

overflow, pointer to a bit field that indicates when the voltage on a channel has exceeded the upper
or lower limits.

Bit 0: Channel 1
...
Bit 15: Channel 16

value, pointer to an int32_t where the ADC value will be written.

Returns

1 if a valid handle is passed and settings are correct
0 if not

If the function fails, call HRDLGetUnitInfo() with info = HRDL_SETTINGS (8) to determine
the settings error.

Driver functions12

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved.adc20.en r2

5.7 HRDLGetSingleValueAsync – retrieves reading after call to
HRDLCollectSingleValueAsync()

int16_t HRDLGetSingleValueAsync

(

int16_t handle,

int32_t * value,

int16_t * overflow

)

This function retrieves the reading when HRDLCollectSingleValueAsync() has been called.

Arguments

handle, device identifier returned by HRDLOpenUnit()

value, pointer to an int32_t where the ADC value will be written

overflow, pointer to a value that indicates when the voltage on a channel has exceeded the upper or
lower limits.

Bit 0: Channel 1
...
Bit 15: Channel 16

Returns

1 if a valid handle is passed and the function succeeds
0 if not

Sample code

Code extract to get a single value reading without blocking the calling thread:

void main()

{

 BOOL bConversionFinished = FALSE;

 int16_t channelNo;

 int32_t value;

 int16_t handle;

 // Open and initialize the unit ...

 // Set the channel parameters

 channelNo = HRDL_ANALOG_IN_CHANNEL_1;

 range = HRDL_2500_MV;

 singleEnded = TRUE;

 bConversionFinished = FALSE;

 while (true)

 {

 PollSingleValue(handle,

 &bConversionFinished,

 &value,

 channelNo,

 range,

 singleEnded);

ADC-20/ADC-24 Programmer's Guide 13

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved. adc20.en r2

 if (bConversionFinished == TRUE)

 {

 // Do something with the value

 channelNo++;

 // This would be HRDL_ANALOG_IN_CHANNEL_8 for the ADC-20

 if (channelNo > HRDL_ANALOG_IN_CHANNEL_16)

 {

 channelNo = HRDL_ANALOG_IN_CHANNEL_1;

 }

 }

 else

 {

 // Do something else while waiting for the reading from the unit

 }

 }

}

void PollSingleValue(int16_t handle,

 BOOL *bConversionFinished,

 int32_t *lValue,

 int16_t channel,

 int16_t range,

 int16_t singleEnded)

{

 static BOOL bStartConversion = FALSE;

 int16_t overflow;

 // Test to see if the conversion has finished

 if (bStartedConversion)

 {

 if (HRDLReady(handle))

 {

 HRDLGetSingleValueAsync(handle, lValue, &overflow);

 bConversionFinished = TRUE;

 bConversionStarted = FALSE;

 }

 }

 // Test to see if no conversion is in progress

 if (!bStartedConversion)

 {

 // Start the conversion going

 bStartedConversion = HRDLCollectSingleValueAsync(handle,

 channel,

 range,

 conversionTime,

 singleEnded);

 bConversionFinished = TRUE;

 }

}

Driver functions14

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved.adc20.en r2

5.8 HRDLGetTimesAndValues – return time-stamped samples

int32_t HRDLGetTimesAndValues

(

int16_t handle,

int32_t * times,

int32_t * values,

int16_t * overflow,

int32_t noOfValues

)

This function returns the requested number of samples for each enabled channel and the times when

the samples were taken, so the values array needs to be (number of values) x (number of enabled
channels). When one or more of the digital IOs are enabled as inputs, they count as one additional
channel. The function indicates if the voltages for any of the enabled channels have overflowed.

Arguments

handle, device identifier returned by HRDLOpenUnit()

times, pointer to an int32_t where times will be written corresponding to the sampling interval

values, pointer to an int32_t where sample values will be written. If more than one channel is
active, the samples are interleaved. If digital channels are enabled then they are always the first values.
See table below for the order in which data values are returned.

overflow, pointer to an int16_t indicating any inputs that have exceeded their maximum voltage
range. Channels with overvoltages are indicated by a high bit, with the LSB indicating channel 1 and the
MSB channel 16.

noOfValues, the number of samples to collect for each active channel.

Returns

A non-zero number if successful indicating the number of values returned,

0 if the call failed or no values available

Ordering of returned data (example)

When two analog channels (e.g. 1 and 5) are enabled and a digital channel is set as an input, the data
are returned in the following order:

Sample No: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 . n-3 n-2 n-1

Channel: DI 1 5 DI 1 5 DI 1 5 DI 1 5 DI 1 5 . DI 1 5

where n represents the value returned by the function and DI the digital inputs.

The channels are always ordered from channel 1 up to the maximum channel number (ADC-24: channel
16, ADC-20: channel 8). If one or more digital channels are set as inputs then the first sample contains
the digital channels.

Digital inputs

The digital channels are represented by a binary bit pattern with 0 representing off, and 1 representing
on. Digital input 1 is in bit 0.

ADC-20/ADC-24 Programmer's Guide 15

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved. adc20.en r2

5.9 HRDLGetUnitInfo – returns unit information as character string

int16_t HRDLGetUnitInfo

(

int16_t handle,

int8_t * string,

int16_t stringLength,

int16_t info

)

This function writes information about the ADC-20 or ADC-24 device to a character string. If the logger

fails to open, only info = HRDL_ERROR (7) is available to explain why the last open unit call failed.
When retrieving the driver version, the handle value is ignored.

Arguments

handle, identifier of the device from which information is required. If an invalid handle is passed, the

error code from the last unit that failed to open is returned (as if info = HRDL_ERROR), unless info

= HRDL_DRIVER_VERSION and then the driver version is returned.

string, pointer to the int8_t string buffer in the calling function where the unit information string

(selected with info) will be stored. If a null pointer is passed, no information will be written.

stringLength, length of the int8_t string buffer. If the string is not long enough to accept all of

the information, only the first stringLength characters are returned.

info, enumerated type (listed below) specifying what information is required from the driver.

Returns

The length of the string written to the int8_t string buffer, string, by the function.

If one of the parameters is out of range, or a null pointer is passed for string, the function will return
zero.

Driver functions16

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved.adc20.en r2

Values of info

Value of info Description Example

HRDL_DRIVER_VERSION (0) The version of picohrdl.dll 1.0.0.1

HRDL_USB_VERSION (1) The type of USB to which the unit
is connected

1.1

HRDL_HARDWARE_VERSION (2) The hardware version of the
HRDL attached

1

HRDL_VARIANT_INFO (3) Information about the type of
HRDL attached

24

HRDL_BATCH_AND_SERIAL (4) Batch and serial numbers of the
unit

CMY02/116

HRDL_CAL_DATE (5) Calibration date of the unit 09Sep05

HRDL_KERNEL_DRIVER_VERSION (6) Kernel driver version

HRDL_ERROR (7) One of the error codes listed in
Error codes below

4

HRDL_SETTINGS (8) One of the error codes listed in
Settings Error Codes below

Error codes (when info = HRDL_ERROR)

Error code Description

HRDL_OK (0) The unit is functioning correctly

HRDL_KERNEL_DRIVER (1) The picopp.sys file is to old to support this
product

HRDL_NOT_FOUND (2) No data logger could be found

HRDL_CONFIG_FAIL (3) Unable to download firmware

HRDL_ERROR_OS_NOT_SUPPORTED (4) The operating system is not supported by this
device

HRDL_MAX_DEVICES (5) The maximum number of units allowed are
already open

Settings Error Codes (when info = HRDL_SETTINGS)

Settings Error Code Description

SE_CONVERSION_TIME_OUT_OF_RANGE (0) The conversion time parameter is out of range

SE_SAMPLEINTERVAL_OUT_OF_RANGE (1) The sample time interval is out of range

SE_CONVERSION_TIME_TOO_SLOW (2) The conversion time chosen is not fast enough to
convert all channels within the sample interval

SE_CHANNEL_NOT_AVAILABLE (3) The channel being set is valid but not currently
available

SE_INVALID_CHANNEL (4) The channel being set is not valid for this device

SE_INVALID_VOLTAGE_RANGE (5) The voltage range being set for this device is not
valid

SE_INVALID_PARAMETER (6) One or more parameters are invalid

SE_CONVERSION_IN_PROGRESS (7) A conversion is in progress for a single
asynchronous operation

SE_COMMUNICATION_FAILED (8) The PC has lost communication with the device

SE_OK (9) All settings have been completed successfully

ADC-20/ADC-24 Programmer's Guide 17

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved. adc20.en r2

5.10 HRDLGetValues – return samples for each enabled channel

int32_t HRDLGetValues

(

int16_t handle,

int32_t * values,

int16_t * overflow,

int32_t noOfValues

)

This function returns the requested number of samples for each enabled channel, so the size of the

values array needs to be (number of values) x (number of enabled channels). When one or more of
the digital IOs are enabled as inputs, they count as one additional channel. The function informs the
user if the voltages of any of the enabled channels have overflowed.

Arguments

handle, device identifier returned by HRDLOpenUnit()

values, pointer to an int32_t where the sample values are written. If more than one channel is
active, the samples are interleaved. If digital channels are enabled then they are always the first value.
See table below for the order in which data are returned.

overflow, pointer to an int16_t indicating any inputs that have exceeded their maximum voltage
range. Channels with overvoltages are indicated by a high bit, with the LSB indicating channel 1 and the
MSB channel 16.

noOfValues, the number of samples to collect for each active channel.

Returns

A non-zero number if successful indicating the number of values returned, or

0 if the call failed or no values available

Ordering of returned data (example)

When two analog channels (such as 1 and 5) are enabled and a digital channel is set as an input, the
data are returned in the following order.

Sample No: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 . n-3 n-2 n-1

Channel: DI 1 5 DI 1 5 DI 1 5 DI 1 5 DI 1 5 . DI 1 5

where n represents the total number of values returned by the function and DI the digital inputs.

The channels are always ordered from channel 1 up to the maximum channel number (ADC-24: channel
16, ADC-20: channel 8). If one or more digital channels are set as inputs, and digital inputs are enabled

by calling HRDLSetDigitalIOChannel() with enabledDigitalIn=1, the first sample in each
group contains the digital channels.

Digital inputs

The digital channels are represented by a binary bit pattern with 0 representing off and 1 representing
on. Digital input 1 is in bit 0.

Driver functions18

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved.adc20.en r2

5.11 HRDLOpenUnit – open a data logger

int16_t HRDLOpenUnit

(

void

)

This function opens an ADC-20 or ADC-24 device. The API driver can support up to 20 units.

Arguments

None

Returns

–1 if the unit fails to open
0 if no unit is found

 1 handle to the device opened

ADC-20/ADC-24 Programmer's Guide 19

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved. adc20.en r2

5.12 HRDLOpenUnitAsync – open a unit without blocking the calling
thread

int16_t HRDLOpenUnitAsync

(

void

)

Opens an ADC-20 or ADC-24 device without blocking the calling thread.

Arguments

None

Returns

-1 if there is already an open operation in progress
0 if no devices are connected
1 if the open operation has been initiated

Driver functions20

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved.adc20.en r2

5.13 HRDLOpenUnitProgress – check progress of an asynchronous open
operation

int16_t HRDLOpenUnitProgress

(

int16_t * handle,

int16_t * progress

)

Checks the progress of an asynchronous open operation.

Arguments

handle, pointer to an int16_t where the unit handle is to be written:
–1: if the unit fails to open
0: if no unit is found
> 0: a handle to the device opened (this handle is not valid unless the function returns true)

progress, pointer to an int16_t to which the percentage progress is to be written. 100% implies
that the open operation is complete.

Returns

0 if open operation is still in progress
1 if the open operation is complete

ADC-20/ADC-24 Programmer's Guide 21

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved. adc20.en r2

5.14 HRDLReady – find out if readings are ready to be collected

int16_t HRDLReady

(

int16_t handle

)

This function indicates when the readings are ready to be retrieved from the driver.

Arguments

handle, device identifier returned by HRDLOpenUnit()

Returns

0 if not ready, or failed
1 if ready

Driver functions22

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved.adc20.en r2

5.15 HRDLRun – start sampling

int16_t HRDLRun

(

int16_t handle,

int32_t nValues,

int16_t method

)

This function starts the device sampling and storing the samples in the driver's buffer. See Streaming
recording methods for help on using this function.

Arguments

handle, device identifier returned by HRDLOpenUnit()

nValues, number of samples to collect for each active channel. Avoid setting this value too low. Set
this value high enough to retrieve the desired number of samples on each subsequent call to

HRDLGetValues() and HRDLGetTimesAndValues().

Guidelines for setting nValues for each sampling method are as follows:

BM_BLOCK, is useful when you wish to collect a fixed amount of data for a short period of time:

for example, to collect 1000 readings in 100 seconds. nValues should be the total number of
samples to collect per channel in block mode.

BM_WINDOW, is useful when collecting several blocks of data at low speeds - for example when
collecting 60 samples in 60 seconds. Collecting a sequence of single blocks like this would take
60 seconds per block, so displayed data would not be updated frequently. Using windowing, it is
possible to ask for a new block more frequently, for example every second, and to receive a block
containing 59 seconds of repeat data and 1 second of new data. The block is effectively a 60

second window that advances one second per cycle. nValues would need to be large enough to
correspond to the number of samples per channel collected in 60 seconds.

BM_STREAM, is useful when you need to collect data continuously for long periods. In principle, it

could be used to collect data indefinitely. Every time HRDLGetValues() is called, it returns the

new readings since the last time it was called. The number of nValues passed to HRDLRun()
must be sufficient to ensure that the buffer does not overflow between successive calls to

HRDLGetValues(). For example, if you call HRDLGetValues() every second and you are
collecting 10 samples per channel per second (if you have set a small enough

conversionTime), nValues must be at least 10, or preferably 20, to allow for delays in the
operating system.

method, sampling method. This should be one of the values listed below.

Returns

0 if failed,
1 if successful

Sampling methods

Value of method Description

BM_BLOCK (0) Collect a single block and stop

BM_WINDOW (1) Collect a sequence of overlapping blocks

BM_STREAM (2) Collect a continuous stream of data

ADC-20/ADC-24 Programmer's Guide 23

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved. adc20.en r2

5.16 HRDLSetAnalogInChannel – enable or disable an analog channel

int16_t HRDLSetAnalogInChannel

(

int16_t handle,

int16_t channel,

int16_t enabled,

int16_t range,

int16_t singleEnded

)

This function enables or disables the selected analog channel. If you wish to enable an odd-numbered
channel in differential mode, you must first make sure that its corresponding even-numbered channel
is disabled. (For example, to set channel 1 to differential mode, first ensure that channel 2 is disabled).

Arguments

handle, device identifier returned by HRDLOpenUnit()

channel, the channel that will be enabled or disabled.
ADC-20: 1 to 8
ADC-24: 1 to 16

enabled, sets the channel active or dormant:
0: dormant
<> 0: active

range, The voltage range to be used during sampling. Applies only to selected channel. See Voltage
ranges below.

singleEnded, non-zero to measure a single-ended voltage. Zero for a differential voltage.

Returns

0 if failed
1 if successful

If the function fails, call HRDLGetUnitInfo() with info = HRDL_SETTINGS (8) to obtain the
specific settings error.

Voltage ranges

Value of range Voltage range Availability

HRDL_2500_MV (0) ±2500 mV ADC-20 and ADC-24

HRDL_1250_MV (1) ±1250 mV ADC-20 and ADC-24

HRDL_625_MV (2) ±625 mV ADC-24 only

HRDL_313_MV (3) ±312.5 mV ADC-24 only

HRDL_156_MV (4) ±156.25 mV ADC-24 only

HRDL_78_MV (5) ±78.125 mV ADC-24 only

HRDL_39_MV (6) ±39.0625 mV ADC-24 only

Driver functions24

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved.adc20.en r2

5.17 HRDLSetDigitalIOChannel – set a digital output or input (ADC-24
only)

int16_t HRDLSetDigitalIOChannel

(

int16_t handle,

int16_t directionOut,

int16_t digitalOutPinState,

int16_t enabledDigitalIn

)

Configures the digital input/output channels of the ADC-24. If the direction is "output" then the pin can
be driven high or low. While the device is sampling, the direction cannot be changed but the state can.

Applicability

ADC-24 only

Arguments

handle, device identifier returned by HRDLOpenUnit()

directionOut, the directions of the digital IO pins. Add up the HRDL_DIGITAL_IO_CHANNEL
constants (see below) for the pins that you want to be outputs. Any pins not configured as outputs will
become inputs.

digitalOutPinState, the states of the digital outputs. Add up the

HRDL_DIGITAL_IO_CHANNEL constants (see below) for the pins that you want to be high. Any pins
not defined as high will be driven low.

enabledDigitalIn, set digital pins specified as inputs in digitalOutPinState as active. Use

a combination of HRDL_DIGITAL_IO_CHANNEL constants (see below). The ordering of returned data

is described under HRDLGetValues().

Returns

0 if failed,
1 if successful

If the function fails, call HRDLGetUnitInfo() with info = HRDL_SETTINGS (8) to obtain the
specific setting error.

Pin values for directionOut and digitalOutPinState:

Pin value Description

HRDL_DIGITAL_IO_CHANNEL_1 (1) IO Pin 1

HRDL_DIGITAL_IO_CHANNEL_2 (2) IO Pin 2

HRDL_DIGITAL_IO_CHANNEL_3 (4) IO Pin 3

HRDL_DIGITAL_IO_CHANNEL_4 (8) IO Pin 4

ADC-20/ADC-24 Programmer's Guide 25

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved. adc20.en r2

Examples:

· To configure digital channels 1 and 2 as inputs and digital channels 3 and 4 as outputs:

directionOut = HRDL_DIGITAL_IO_CHANNEL_3 (4) +

HRDL_DIGITAL_IO_CHANNEL_4 (8) = 12

· To drive digital channel 4 high and digital channel 3 low:

digitalOutPinState = HRDL_DIGITAL_IO_CHANNEL_4 (8) = 8

· To drive only digital channel 3 high:

digitalOutPinState = HRDL_DIGITAL_IO_CHANNEL_3 (4) = 4

· To drive both digital channels 3 and 4 high:

digitalOutPinState = HRDL_DIGITAL_IO_CHANNEL_3 (4) +

HRDL_DIGITAL_IO_CHANNEL_4 (8) = 12

Example bit patterns for directionOut parameter:

Decimal Bit
Pattern

Digital
Channel 4

Digital
Channel 3

Digital
Channel 2

Digital
Channel 1

1 0001 Input Input Input Output
10 1010 Output Input Output Input
12 1100 Output Output Input Input
13 1101 Output Output Input Output

The above is a selection of the 16 different options available for the directionOut parameter. When
a digital channel has been configured as an output, it can then be driven high or low with the

digitalOutputPinState parameter, again using bit patterns to represent the different digital
channels.

The default setting for the digital channels is "output, low".

Driver functions26

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved.adc20.en r2

5.18 HRDLSetInterval – set the sampling time interval

int16_t HRDLSetInterval

(

int16_t handle,

int32_t sampleInterval_ms,

int16_t conversionTime

)

This sets the sampling time interval. The value of sampleInterval_ms should be greater than the
conversion time multiplied by the number of enabled analog channels.

For example, if the value of sampleInterval_ms is 1000 ms and there are two channels, each
being converted over 60 ms, then at every 1 second interval there will be two readings, 1 for each
channel. The minimum sampling interval, in this case, would be 121 ms.

Conversion is sequential across all enabled channels.

Arguments

handle, device identifier returned by HRDLOpenUnit()

sampleInterval_ms, time interval in milliseconds within which all conversions must take place
before the next set of conversions starts.

conversionTime, the amount of time given to one channel's conversion. This must be one of the
constants below.

Returns

0 if failed
1 if successful

If the function fails, call HRDLGetUnitInfo() with info = HRDL_SETTINGS for the specific
settings error.

Conversion times

Value of conversionTime Conversion time

HRDL_60MS (0) 60 ms

HRDL_100MS (1) 100 ms

HRDL_180MS (2) 180 ms

HRDL_340MS (3) 340 ms

HRDL_660MS (4) 660 ms

ADC-20/ADC-24 Programmer's Guide 27

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved. adc20.en r2

5.19 HRDLSetMains – set the mains noise rejection frequency

int16_t HRDLSetMains

(

int16_t handle,

int16_t sixtyHertz

)

This function configures the mains noise rejection setting. Rejection takes effect the next time
sampling occurs.

Arguments

handle, device identifier returned by HRDLOpenUnit()

sixtyHertz, specifies whether 50 Hz or 60 Hz noise rejection is applied:
0: reject 50 Hz
<> 0: reject 60 Hz

Returns

0 if failed
1 if successful

Driver functions28

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved.adc20.en r2

5.20 HRDLStop – stop the device when streaming

void HRDLStop

(

int16_t handle

)

This function stops the device from sampling data.

When running the device in windowed or streaming mode, you will need to call this function to end data
collection. This is particularly important in streaming mode, to ensure that the device is ready for the
next capture.

When running the device in block mode, you can call this function to interrupt data capture.

Arguments

handle, device identifier returned by HRDLOpenUnit()

ADC-20/ADC-24 Programmer's Guide 29

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved. adc20.en r2

6 Sequence of calls and data flow

The C sample program picohrdlCon.c demonstrates the use of all the functions of the API driver,
and includes examples showing each mode of operation. It is available from the picohrdl subdirectory
in the picotech/picosdk-c-examples repository on GitHub.

6.1 Streaming recording methods

6.1.1 Collecting a block of data

This method collects a single block of data and then stops.

· Open the data logger with one of the HRDLOpenUnit() calls

· Set mains noise rejection with HRDLSetMains()

· Set the analog or/and digital channels

· Set the sample interval with HRDLSetInterval()

· Start the unit collecting samples by calling HRDLRun() with method = BM_BLOCK

· Loop

· Repeat Loop until ready (HRDLReady())

· Collect data with HRDLGetValues()

· Repeat from "Start the unit" until you have finished collecting data.

· Close the connection to the unit with HRDLCloseUnit()

https://github.com/picotech/picosdk-c-examples

Sequence of calls and data flow30

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved.adc20.en r2

6.1.2 Collecting windowed or streaming data

This method causes the device to start sampling. Samples are stored in the driver's buffer. In
windowed mode, the buffer will always contain the requested number of samples, but generally only a
subset of these are new data. In streaming mode, new data are returned continuously.

· Open the data logger with one of the HRDLOpenUnit() calls

· Set mains noise rejection with HRDLSetMains()

· Set the analog or/and digital channels

· Set the sample interval with HRDLSetInterval()

· Start the unit collecting samples by calling HRDLRun() with method = BM_WINDOW or

BM_STREAM

· Loop

· Repeat Loop until ready (HRDLReady())

· Collect data whenever you want with HRDLGetValues()

· Call HRDLStop() to end data collection

· Close the connection to the unit with HRDLCloseUnit()

ADC-20/ADC-24 Programmer's Guide 31

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved. adc20.en r2

6.2 Single-value recording methods

6.2.1 Collecting a single reading, blocking

This method collects a single reading and blocks the calling thread.

· Open the data logger with one of the HRDLOpenUnit() calls

· Set mains noise rejection with HRDLSetMains()

· Get a single reading (one channel only at a time) with HRDLGetSingleValue()

· Close the connection to the unit with HRDLCloseUnit()

6.2.2 Collecting a single reading, non-blocking

This method collects a single reading without blocking the calling thread.

· Open the data logger with one of the HRDLOpenUnit() calls

· Set mains noise rejection with HRDLSetMains()

· Start the conversion for a single reading with HRDLCollectSingleValueAsync()

· Wait until the reading is ready (HRDLReady())

· Get the reading from the driver with HRDLGetSingleValueAsync()

· Close the connection to the unit with HRDLCloseUnit()

Glossary32

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved.adc20.en r2

7 Glossary

Asynchronous. In asynchronous data collection, your application requests data from the driver, and the
driver immediately returns without blocking the application. The application must then poll a status
function until the data is ready.

Data logger. A measuring instrument that monitors one or more analog signals, samples them at pre-
programmed intervals, then accurately converts the samples to digital data and stores them in memory.
The ADC-20 and ADC-24 use your PC for storage and display.

DLL. Dynamic Link Library. A DLL is a file containing a collection of Windows functions designed to
perform a specific class of operations.

Driver. A driver is a computer program that acts as an interface, generally between a hardware
component and a computer system, the hardware in this case being the data logger.

LSB. Least significant bit. In a binary word, the least significant bit has the value 1.

MSB. Most significant bit. In an n-bit binary word, the most significant bit has the value 2(n–1).

Noise rejection. The ability of the data logger to attenuate noise in a given frequency range. The ADC-
20/ADC-24 can be programmed to reject noise at either 50 hertz or 60 hertz. The noise rejection ratio is
defined as:

NRR(dB) = 20 log10 (Vin/Vmeas)

where NRR(dB) is the noise rejection ratio in decibels, Vin is the noise voltage at the input, and Vmeas
is the noise voltage that appears in the measurement.

USB. Universal Serial Bus. This is a standard port that enables you to connect external devices to PCs.
A full-speed USB 2.0 port operates at up to 480 megabits per second. The PicoLog 1000 Series is
compatible with any USB port from USB 1.1 upwards.

UK headquarters:

Pico Technology
James House
Colmworth Business Park
ST NEOTS
Cambridgeshire
PE19 8YP
United Kingdom

Tel: +44 (0) 1480 396 395

sales@picotech.com
support@picotech.com

www.picotech.com

Copyright © 2005–2019 Pico Technology Ltd. All rights reserved.

adc20.en r2 2019-10-18

USA regional office:

Pico Technology
320 N Glenwood Blvd
Tyler
Texas 75702
United States of America

Tel: +1 800 591 2796

sales@picotech.com
support@picotech.com

Asia-Pacific regional office:

Pico Technology
Room 2252, 22/F, Centro
568 Hengfeng Road
Zhabei District
Shanghai 200070
PR China

Tel: +86 21 2226-5152

pico.china@picotech.com

	Overview
	Notices
	Legal information
	Trademarks

	Getting started
	Installing the software
	Connecting the data logger

	Concepts
	Recording methods
	Windows driver
	Scaling

	Driver functions
	HRDLAcknowledge – ping unit function
	HRDLCloseUnit – shuts down unit
	HRDLCollectSingleValueAsync – sample a single value, non-blocking
	HRDLGetMinMaxAdcCounts – return the maximum and minimum ADC count
	HRDLGetNumberOfEnabledChannels – return the number of analog channels enabled
	HRDLGetSingleValue – take one sample for the specified channel
	HRDLGetSingleValueAsync – retrieves reading after call to HRDLCollectSingleValueAsync()
	HRDLGetTimesAndValues – return time-stamped samples
	HRDLGetUnitInfo – returns unit information as character string
	HRDLGetValues – return samples for each enabled channel
	HRDLOpenUnit – open a data logger
	HRDLOpenUnitAsync – open a unit without blocking the calling thread
	HRDLOpenUnitProgress – check progress of an asynchronous open operation
	HRDLReady – find out if readings are ready to be collected
	HRDLRun – start sampling
	HRDLSetAnalogInChannel – enable or disable an analog channel
	HRDLSetDigitalIOChannel – set a digital output or input (ADC-24 only)
	HRDLSetInterval – set the sampling time interval
	HRDLSetMains – set the mains noise rejection frequency
	HRDLStop – stop the device when streaming

	Sequence of calls and data flow
	Streaming recording methods
	Collecting a block of data
	Collecting windowed or streaming data

	Single-value recording methods
	Collecting a single reading, blocking
	Collecting a single reading, non-blocking

	Glossary

